Suppr超能文献

Evidence for identity of beta-pyrazolealanine synthase with cysteine synthase in watermelon: formation of beta-pyrazole-alanine by cloned cysteine synthase in vitro and in vivo.

作者信息

Noji M, Murakoshi I, Saito K

机构信息

Faculty of Pharmaceutical Sciences, Chiba University, Japan.

出版信息

Biochem Biophys Res Commun. 1993 Dec 30;197(3):1111-7. doi: 10.1006/bbrc.1993.2592.

Abstract

The responsibility of cysteine synthase (EC 4.2.99.8) from watermelon (Citrullus vulgaris) for the formation of beta-(pyrazole-1-yl)-L-alanine, a non-protein amino acid specifically accumulated in Curcubitaceae plants, was confirmed in vitro and in vivo by the cloned cDNA on expression vectors, pCCS11 and pCEN1. The cDNA sequence derived from pCCS11, an expression vector driven by the lacZ promoter, was placed under the transcriptional control of strong T7 promoter of pET3d to yield an over-expression vector, pCEN1, in Escherichia coli. The concentration of the exogenous cysteine synthase protein was increased up to approximately 10% of the total soluble protein of E. coli cells by the expression of cDNA on pCEN1. beta-(Pyrazole-1-yl)-L-alanine was formed in vitro from O-acetyl-L-serine and pyrazole by the action of cysteine synthase expressed in E. coli carrying pCCS11 or pCEN1. To confirm the responsibility of cysteine synthase for the formation of beta-(pyrazole-1-yl)-L-alanine in vivo, the feeding experiments of pyrazole and serine or O-acetyl-L-serine were carried out using the transformed E. coli culture. beta-(Pyrazole-1-yl)-L-alanine was produced in vivo by feeding the substrates to the culture of E. coli carrying pCEN1. These results provide the confirming evidence that the cloned cysteine synthase of watermelon catalyzes the formation of beta-(pyrazole-1-yl)-L-alanine, indicating that beta-pyrazolealanine synthase is identical with cysteine synthase in Cucurbitaceae plants.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验