Sevilla-Sierra P, Otting G, Wüthrich K
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.
J Mol Biol. 1994 Jan 21;235(3):1003-20. doi: 10.1006/jmbi.1994.1053.
The solution structure of the N-terminal DNA-binding domain of the P22 c2 repressor (residues 1 to 76) was determined by nuclear magnetic resonance (NMR) spectroscopy. The structure determination was based on nearly complete sequence-specific resonance assignments for 1H, 13C and 15N, and tables of the chemical shifts for all three nuclei are included here. A group of 20 conformers was calculated from the NMR constraints using the program DIANA, and energy-minimized using an implementation of the AMBER force field in the program OPAL. The core of the protein formed by residues 5 to 68 is structurally well defined, with an average of 0.7 A for the root-mean-square deviations calculated for the backbone atoms of the individual conformers relative to the mean coordinates. The N-terminal tetrapeptide segment and the C-terminal octapeptide segment are flexibly disordered. The molecular architecture includes five alpha-helical segments with residues 6 to 17, 21 to 28, 32 to 39, 47 to 57 and 61 to 65. The length and relative orientation of these helices are closely similar to the arrangement of corresponding regular secondary structures in the DNA-binding domain of the 434 repressor, with the sole exception of the fourth helix, which is one turn longer at its amino-terminal end than the corresponding helix in the 434 repressor. This extension of the fourth helix implies that the DNA-binding mode of the P22 c2 repressor must be somewhat different from that observed for the 434 repressor. Exact superposition of two P22 c2 repressor DNA-binding domains for best fit of corresponding polypeptide backbone atoms onto the two 434 repressor DNA-binding domains in the crystal structure of the 434 repressor-DNA complex would result in a model of the P22 c2 repressor-DNA complex which could not accommodate the fourth helices because of steric overlap.
通过核磁共振(NMR)光谱法确定了P22 c2阻遏物N端DNA结合结构域(第1至76位氨基酸残基)的溶液结构。结构测定基于对1H、13C和15N几乎完整的序列特异性共振归属,此处还包含了所有这三种原子核的化学位移表。使用DIANA程序根据NMR约束条件计算出一组20个构象体,并在OPAL程序中使用AMBER力场的一个实现对其进行能量最小化。由第5至68位氨基酸残基形成的蛋白质核心在结构上定义明确,相对于平均坐标,各个构象体主链原子的均方根偏差平均为0.7埃。N端四肽段和C端八肽段呈灵活无序状态。分子结构包括五个α螺旋段,分别位于第6至17、21至28、32至39、47至57和61至65位氨基酸残基处。这些螺旋的长度和相对取向与434阻遏物DNA结合结构域中相应规则二级结构的排列非常相似,唯一的例外是第四个螺旋,其氨基末端比434阻遏物中的相应螺旋长一圈。第四个螺旋的这种延伸意味着P22 c2阻遏物的DNA结合模式必定与434阻遏物所观察到的有所不同。将两个P22 c2阻遏物DNA结合结构域精确叠加,以使相应的多肽主链原子与434阻遏物-DNA复合物晶体结构中的两个434阻遏物DNA结合结构域最佳拟合,会得到一个P22 c2阻遏物-DNA复合物模型,由于空间重叠,该模型无法容纳第四个螺旋。