Massiah M A, Starich M R, Paschall C, Summers M F, Christensen A M, Sundquist W I
Howard Hughes Medical Institute, Baltimore, MD.
J Mol Biol. 1994 Nov 25;244(2):198-223. doi: 10.1006/jmbi.1994.1719.
The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.
HIV-1基质蛋白形成一个二十面体外壳,与成熟病毒的内膜相关联。基因分析表明,该蛋白在病毒的整个生命周期中发挥着重要功能,包括将跨膜包膜蛋白锚定在病毒表面、协助病毒穿透、将前病毒整合复合物转运穿过核膜以及将组装中的病毒体定位到细胞膜。我们现在报告重组HIV-1基质蛋白的三维结构,该结构通过核磁共振(NMR)方法以高分辨率测定。HIV-1基质蛋白是第一个在结构上得到表征的逆转录病毒基质蛋白,也是已知结构的第四个HIV-1蛋白。由于132个已归属的Hα质子中有91%以及129个可归属的主链酰胺质子中有74%的信号分别在0.8 ppm和1 ppm的化学位移范围内共振,因此NMR信号归属需要最近开发的三共振(1H、13C、15N)NMR方法。总共636个源自核Overhauser效应的距离约束用于基于距离几何的结构计算,对于实验约束的氨基酸,每个残基平均有13.0个源自NMR的距离约束。生成了一组25个经过优化的距离几何结构,其惩罚值(距离违反的平方和)为0.32 Å2或更小,且单个距离违反小于0.06 Å;相对于平均原子位置对有序主链重原子进行最佳拟合叠加得到的均方根偏差为0.50(±0.08)Å。折叠后的HIV-1基质蛋白结构由五个α螺旋、一段短的3(10)螺旋片段和一个三链混合β折叠组成。螺旋I至III以及3(10)螺旋围绕中心螺旋(IV)堆积,形成一个紧凑的球状结构域,该结构域由β折叠封顶。C末端螺旋(螺旋V)从β折叠伸出,以暴露HIV-1感染周期早期步骤所必需的羧基末端残基。与膜结合和核定位功能相关的碱性残基聚集在连接β链1和2的一个突出的阳离子环周围。该结构表明,膜结合和核定位可能均由复杂的三级结构而非简单的线性决定因素介导。