Suppr超能文献

The ClusNet algorithm and time series prediction.

作者信息

Hsu W, Hsu L S, Tenorio M F

机构信息

Department of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907.

出版信息

Int J Neural Syst. 1993 Sep;4(3):247-55. doi: 10.1142/s0129065793000201.

Abstract

This paper describes a novel neural network architecture named ClusNet. This network is designed to study the trade-offs between the simplicity of instance-based methods and the accuracy of the more computational intensive learning methods. The features that make this network different from existing learning algorithms are outlined. A simple proof of convergence of the ClusNet algorithm is given. Experimental results showing the convergence of the algorithm on a specific problem is also presented. In this paper, ClusNet is applied to predict the temporal continuation of the Mackey-Glass chaotic time series. A comparison between the results obtained with ClusNet and other neural network algorithms is made. For example, ClusNet requires one-tenth the computing resources of the instance-based local linear method for this application while achieving comparable accuracy in this task. The sensitivity of ClusNet prediction accuracies on specific clustering algorithms is examined for an application. The simplicity and fast convergence of ClusNet makes it ideal as a rapid prototyping tool for applications where on-line learning is required.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验