Suppr超能文献

用于重复分类响应的具有随机效应的对数模型的无分布拟合。

Distribution-free fitting of logit models with random effects for repeated categorical responses.

作者信息

Agresti A

机构信息

Department of Statistics, University of Florida, Gainesville 32611.

出版信息

Stat Med. 1993 Nov 15;12(21):1969-87. doi: 10.1002/sim.4780122102.

Abstract

This article discusses random effects models for within-subject comparisons of repeated responses on the same categorical scale. The models account for the correlation that normally occurs between repeated responses. The standard way of fitting such models maximizes the marginal likelihood after integrating with respect to a distribution for the random effect. An alternative non-parametric approach does not assume a distributional form for the random effects. Recent literature shows that for certain simple logit models, this approach yields essentially the same model parameter estimates as conditional maximum likelihood. Moreover, these estimates also result from fitting corresponding quasi-symmetric log-linear models. For simple data sets in which primary interest relates to subject-specific comparisons of the repeated responses, one can easily obtain the estimates with standard software for log-linear models. Examples include data from crossover designs and from comparisons of treatment and control groups regarding the change between baseline and follow-up observations.

摘要

本文讨论了用于在同一分类尺度上对重复响应进行受试者内比较的随机效应模型。这些模型考虑了重复响应之间通常出现的相关性。拟合此类模型的标准方法是在对随机效应的分布进行积分后最大化边际似然。一种替代的非参数方法不假定随机效应的分布形式。最近的文献表明,对于某些简单的logit模型,这种方法产生的模型参数估计与条件最大似然基本相同。此外,这些估计也来自拟合相应的拟对称对数线性模型。对于主要关注重复响应的受试者特定比较的简单数据集,可以使用对数线性模型的标准软件轻松获得估计值。示例包括交叉设计的数据以及治疗组和对照组在基线和随访观察之间变化的比较数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验