Dwyer J D, Bloomfield V A
Department of Biochemistry, University of Minnesota, St. Paul 55108.
Biophys J. 1993 Nov;65(5):1810-6. doi: 10.1016/S0006-3495(93)81235-9.
We have developed a Brownian dynamics algorithm for simulating probe and self-diffusion in concentrated solutions of DNA and protein. In these simulations, proteins are represented as spheres with radii given by their hydrodynamic radii, while DNA is modeled as a wormlike chain of hydrodynamically equivalent spherical frictional elements. The molecular interaction potentials employed by the program allow for intramolecular stretching and bending motions of the DNA chains, short-range Lennard-Jones interactions, and long-range electrostatic interactions. To test the program, we have carried out simulations of bovine serum albumin (BSA) probe diffusion and DNA self-diffusion in solutions of short-chain DNA as a function of both DNA concentration and solution ionic strength. In addition, we report on simulations of BSA self-diffusion as a function of BSA concentration and ionic strength. Based on a comparison to available experimental data, we find that our simulations accurately predict these transport properties under conditions of physiological salt concentration and predict the stronger concentration dependence observed at lower salt concentrations. These results are discussed in light of the nature of the intermolecular interactions in such systems and the approximations and limitations of the simulation algorithm.
我们开发了一种布朗动力学算法,用于模拟DNA和蛋白质浓溶液中的探针扩散和自扩散。在这些模拟中,蛋白质被表示为半径由其流体动力学半径给出的球体,而DNA则被建模为具有流体动力学等效球形摩擦元件的蠕虫状链。该程序采用的分子相互作用势允许DNA链的分子内拉伸和弯曲运动、短程 Lennard-Jones 相互作用以及长程静电相互作用。为了测试该程序,我们进行了牛血清白蛋白(BSA)探针扩散和短链DNA溶液中DNA自扩散的模拟,模拟结果是DNA浓度和溶液离子强度的函数。此外,我们报告了BSA自扩散作为BSA浓度和离子强度函数的模拟结果。通过与现有实验数据的比较发现,我们的模拟能够在生理盐浓度条件下准确预测这些传输性质,并能预测在较低盐浓度下观察到的更强的浓度依赖性。根据此类系统中分子间相互作用的性质以及模拟算法的近似性和局限性对这些结果进行了讨论。