Suppr超能文献

红细胞中血红蛋白的微观扩散与流体动力学相互作用。

Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.

作者信息

Doster Wolfgang, Longeville Stéphane

机构信息

Physics Department, Technical University Munich, Garching, Germany.

出版信息

Biophys J. 2007 Aug 15;93(4):1360-8. doi: 10.1529/biophysj.106.097956. Epub 2007 May 18.

Abstract

The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.

摘要

红细胞的细胞质中充满了氧储存蛋白血红蛋白,其占据了细胞体积的四分之一。高蛋白浓度导致迁移率降低;血细胞中血红蛋白的自扩散系数比在稀溶液中低六倍。这种效应通常归因于拥挤介质中的排阻体积效应。然而,血红蛋白的集体扩散系数或梯度扩散系数仅微弱地依赖于浓度,这表明渗透压和摩擦力之间存在补偿。这将排除流体动力学相互作用,流体动力学相互作用源于动力学,对渗透压没有贡献。在直接相互作用完全建立之前,蛋白质分子之间的流体动力学耦合在短时间和长度尺度上占主导地位。利用中子自旋回波光谱技术,我们在纳秒时间尺度上研究血红蛋白的扩散以及在几纳米尺度上研究蛋白质的位移。我们发现了一个与时间和波矢相关的扩散系数,这表明了自扩散和集体扩散的交叉。此外,还推导出了一个与波矢相关的摩擦函数,这是流体动力学相互作用的一个特征。血红蛋白长时间自扩散系数的波矢和浓度依赖性在定性上与硬球悬浮液中流体动力学的理论结果一致。定量一致性要求我们通过包括部分水化层来调整体积分数:与大得多的标准胶体相比,蛋白质表现出更大 的表面/体积比。可以得出结论,在高浓度下,流体动力学而非直接相互作用主导着长程分子传输。

相似文献

引用本文的文献

6
Multiscale modeling of hemolysis during microfiltration.微滤过程中溶血的多尺度建模
Microfluid Nanofluidics. 2020 May;24(5). doi: 10.1007/s10404-020-02337-3. Epub 2020 Apr 10.
10
ULTRATHIN SILICON MEMBRANES FOR IMPROVING EXTRACORPOREAL BLOOD THERAPIES.用于改善体外血液治疗的超薄硅膜
Proc Int Conf Nanochannels Microchannels Minichannels. 2016;2016. doi: 10.1115/ICNMM2016-8052. Epub 2016 Nov 9.

本文引用的文献

1
Submicroscopic structure of the red cell.
Nature. 1948 Feb 7;161(4084):204. doi: 10.1038/161204a0.
2
Protein-water displacement distributions.蛋白质-水置换分布
Biochim Biophys Acta. 2005 Jun 1;1749(2):173-86. doi: 10.1016/j.bbapap.2005.03.010. Epub 2005 Apr 9.
3
Single-molecule spectroscopic methods.单分子光谱方法。
Curr Opin Struct Biol. 2004 Oct;14(5):531-40. doi: 10.1016/j.sbi.2004.09.004.
4
Macromolecular crowding: obvious but underappreciated.大分子拥挤现象:显而易见却未得到充分重视。
Trends Biochem Sci. 2001 Oct;26(10):597-604. doi: 10.1016/s0968-0004(01)01938-7.
8
Long-time self-diffusion in concentrated colloidal dispersions.
Phys Rev Lett. 1988 Jun 27;60(26):2705-2708. doi: 10.1103/PhysRevLett.60.2705.
9
Dynamics of hard-sphere suspensions.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jul;50(1):R16-R19. doi: 10.1103/physreve.50.r16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验