Doster Wolfgang, Longeville Stéphane
Physics Department, Technical University Munich, Garching, Germany.
Biophys J. 2007 Aug 15;93(4):1360-8. doi: 10.1529/biophysj.106.097956. Epub 2007 May 18.
The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.
红细胞的细胞质中充满了氧储存蛋白血红蛋白,其占据了细胞体积的四分之一。高蛋白浓度导致迁移率降低;血细胞中血红蛋白的自扩散系数比在稀溶液中低六倍。这种效应通常归因于拥挤介质中的排阻体积效应。然而,血红蛋白的集体扩散系数或梯度扩散系数仅微弱地依赖于浓度,这表明渗透压和摩擦力之间存在补偿。这将排除流体动力学相互作用,流体动力学相互作用源于动力学,对渗透压没有贡献。在直接相互作用完全建立之前,蛋白质分子之间的流体动力学耦合在短时间和长度尺度上占主导地位。利用中子自旋回波光谱技术,我们在纳秒时间尺度上研究血红蛋白的扩散以及在几纳米尺度上研究蛋白质的位移。我们发现了一个与时间和波矢相关的扩散系数,这表明了自扩散和集体扩散的交叉。此外,还推导出了一个与波矢相关的摩擦函数,这是流体动力学相互作用的一个特征。血红蛋白长时间自扩散系数的波矢和浓度依赖性在定性上与硬球悬浮液中流体动力学的理论结果一致。定量一致性要求我们通过包括部分水化层来调整体积分数:与大得多的标准胶体相比,蛋白质表现出更大 的表面/体积比。可以得出结论,在高浓度下,流体动力学而非直接相互作用主导着长程分子传输。