Lodge J K, Johnson R L, Weinberg R A, Gordon J I
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
J Biol Chem. 1994 Jan 28;269(4):2996-3009.
Myristoyl-CoA:protein N-myristoyltransferase (Nmt) transfers myristate from CoA to the N-terminal Gly residue of cellular proteins in an ordered reaction mechanism that first involves binding of myristoyl-CoA to the apoenzyme. The gene encoding Saccharomyces cerevisiae Nmt1p (NMT1) is essential for vegetative growth. Candida albicans, Cryptococcus neoformans var. neoformans, and Histoplasma capsulatum are the principal causes of systemic fungal infections in immunocompromised humans. Metabolic labeling studies indicate that they synthesize a small set of cellular N-myristoylproteins during exponential growth on rich media, the most prominent of which co-migrate with two essential functionally interchangeable S. cerevisiae N-myristoylproteins, ADP ribosylation factor-1 (Arf1p) and Arf2p. NMT and ARF genes have been recovered from C. neoformans and H. capsulatum using the polymerase chain reaction. They are single copy genes, interrupted by multiple introns. C. neoformans and H. capsulatum Nmts have approximately 50% amino acid sequence identity with the orthologous S. cerevisiae, C. albicans, and Homo sapiens N-myristoyltransferases, whereas C. neoformans and H. capsulatum Arfs are approximately 80% identical with C. albicans Arf and S. cerevisiae Arf1p and Arf2p. Functional studies of C. neoformans and C. albicans Nmts conducted in Escherichia coli reveal that (i) both efficiently acylate S. cerevisiae Arf2p; (ii) C. neoformans Arf is a substrate for C. neoformans Nmt; and (iii) substitution of an Asp for a Gly located 5 residues from the C terminus of these two enzymes causes marked temperature-dependent reductions in their catalytic efficiency, just as it does with S. cerevisiae and H. sapiens Nmts. Wild type C. neoformans, C. albicans, and H. sapiens NMTs can fully complement the lethal phenotype of a S. cerevisiae nmt1 null allele at 24 and 37 degrees C when the GAL1-10 promoter controlling their expression is induced by galactose. Only the C. albicans enzyme is able to do so when the promoter is repressed with glucose. This complementation profile likely arises, at least in part, from differences in the protein substrate specificities of the orthologous Nmts. A Gly-->Asp mutation in S. cerevisiae, C. neoformans, C. albicans, and H. sapiens Nmts produces temperature-sensitive growth arrest in isogenic S. cerevisiae strains with a nmt1 null allele. Growth of strains producing the mutant C. albicans or H. sapiens, but not the C. neoformans, enzyme can be rescued by myristate at the non-permissive temperature (37 degrees C) even in the presence of cerulenin, an inhibitor of fatty acid synthetase.(ABSTRACT TRUNCATED AT 400 WORDS)
肉豆蔻酰辅酶A:蛋白质N-肉豆蔻酰转移酶(Nmt)以有序的反应机制将肉豆蔻酸从辅酶A转移至细胞蛋白质的N端甘氨酸残基上,该机制首先涉及肉豆蔻酰辅酶A与脱辅基酶的结合。编码酿酒酵母Nmt1p(NMT1)的基因对营养生长至关重要。白色念珠菌、新生隐球菌新生变种和荚膜组织胞浆菌是免疫功能低下人群系统性真菌感染的主要病因。代谢标记研究表明,它们在富含营养的培养基上指数生长期间合成一小部分细胞N-肉豆蔻酰化蛋白,其中最显著的与两种必需的功能可互换的酿酒酵母N-肉豆蔻酰化蛋白——ADP核糖基化因子-1(Arf1p)和Arf2p共迁移。使用聚合酶链反应已从新生隐球菌和荚膜组织胞浆菌中克隆出NMT和ARF基因。它们是单拷贝基因,被多个内含子打断。新生隐球菌和荚膜组织胞浆菌的Nmt与直系同源的酿酒酵母、白色念珠菌和人类N-肉豆蔻酰转移酶具有约50%的氨基酸序列同一性,而新生隐球菌和荚膜组织胞浆菌的Arf与白色念珠菌Arf以及酿酒酵母Arf1p和Arf2p约80%相同。在大肠杆菌中对新生隐球菌和白色念珠菌Nmt进行的功能研究表明:(i)二者均能有效地酰化酿酒酵母Arf2p;(ii)新生隐球菌Arf是新生隐球菌Nmt的底物;(iii)这两种酶C端第5个残基处的甘氨酸被天冬氨酸取代会导致其催化效率显著降低,且具有温度依赖性,酿酒酵母和人类Nmt也是如此。当由半乳糖诱导控制其表达的GAL1 - 10启动子时,野生型新生隐球菌、白色念珠菌和人类NMT在24℃和37℃时能完全互补酿酒酵母nmt1缺失等位基因的致死表型。当启动子被葡萄糖抑制时,只有白色念珠菌的酶能够做到这一点。这种互补情况可能至少部分源于直系同源Nmt的蛋白质底物特异性差异。酿酒酵母、新生隐球菌、白色念珠菌和人类Nmt中的甘氨酸→天冬氨酸突变在具有nmt1缺失等位基因的同基因酿酒酵母菌株中产生温度敏感型生长停滞。在非允许温度(37℃)下,即使存在脂肪酸合成酶抑制剂浅蓝菌素,产生突变白色念珠菌或人类(而非新生隐球菌)酶的菌株生长也能被肉豆蔻酸挽救。(摘要截于400字)