Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K
Department of Molecular Biology, Faculty of Science, Nagoya University, Japan.
EMBO J. 1994 Jan 1;13(1):61-70. doi: 10.1002/j.1460-2075.1994.tb06235.x.
Pheromone-stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone-induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3.
信息素刺激的酵母细胞和单倍体gpa1缺失突变体在G1期停滞其细胞周期。一个名为MSG5的新基因的过表达抑制了这种对细胞分裂的抑制作用。MSG5功能的丧失导致对信息素的适应性反应减弱。遗传分析表明,MSG5在蛋白激酶STE7和FUS3传递信息素诱导信号的阶段起作用。由于MSG5功能的丧失导致FUS3酶活性增加而不是STE7活性增加,我们推测MSG5在FUS3处影响该信号通路。序列分析表明,MSG5编码一种蛋白酪氨酸磷酸酶。重组MSG5在体外具有磷酸酶活性并能够使自磷酸化的FUS3失活,这一发现支持了上述推测。因此,MSG5可能通过调节FUS3的磷酸化状态来刺激从信息素作用中恢复。