Suppr超能文献

实时遗传补偿定义了反馈控制的动态需求。

Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control.

机构信息

Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.

出版信息

Cell. 2018 Oct 18;175(3):877-886.e10. doi: 10.1016/j.cell.2018.09.044.

Abstract

Biological signaling networks use feedback control to dynamically adjust their operation in real time. Traditional static genetic methods such as gene knockouts or rescue experiments can often identify the existence of feedback interactions but are unable to determine what feedback dynamics are required. Here, we implement a new strategy, closed-loop optogenetic compensation (CLOC), to address this problem. Using a custom-built hardware and software infrastructure, CLOC monitors, in real time, the output of a pathway deleted for a feedback regulator. A minimal model uses these measurements to calculate and deliver-on the fly-an optogenetically enabled transcriptional input designed to compensate for the effects of the feedback deletion. Application of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and traditional genetics, presents a broadly applicable methodology for defining the dynamic function of biological feedback regulators.

摘要

生物信号网络利用反馈控制实时动态调整其运作。传统的静态遗传方法,如基因敲除或挽救实验,通常可以识别反馈相互作用的存在,但无法确定所需的反馈动态。在这里,我们实施了一种新策略,闭环光遗传学补偿(CLOC),来解决这个问题。使用定制的硬件和软件基础设施,CLOC 实时监测被反馈调节剂删除的途径的输出。一个最小模型使用这些测量值来计算并实时提供一个光遗传学激活的转录输入,旨在补偿反馈删除的影响。CLOC 在酵母信息素反应途径中的应用揭示了三个研究充分的反馈调节剂的惊人不同的动态要求。CLOC 是控制理论和传统遗传学的结合,为定义生物反馈调节剂的动态功能提供了一种广泛适用的方法。

相似文献

1
Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control.
Cell. 2018 Oct 18;175(3):877-886.e10. doi: 10.1016/j.cell.2018.09.044.
2
Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production.
Metab Eng. 2023 May;77:32-40. doi: 10.1016/j.ymben.2023.03.001. Epub 2023 Mar 11.
3
Model-guided optogenetic study of PKA signaling in budding yeast.
Mol Biol Cell. 2017 Jan 1;28(1):221-227. doi: 10.1091/mbc.E16-06-0354. Epub 2016 Nov 9.
4
Positive-feedback loops as a flexible biological module.
Curr Biol. 2007 Apr 17;17(8):668-77. doi: 10.1016/j.cub.2007.03.016. Epub 2007 Mar 29.
6
An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.
Mol Cell. 2018 May 17;70(4):745-756.e6. doi: 10.1016/j.molcel.2018.04.012.
7
Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1.
Mol Biol Cell. 2018 Mar 1;29(5):669-682. doi: 10.1091/mbc.E17-10-0578. Epub 2018 Jan 10.
8
A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
Biotechnol Bioeng. 2020 Mar;117(3):886-893. doi: 10.1002/bit.27234. Epub 2019 Dec 18.
9
Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae.
mSphere. 2021 Aug 25;6(4):e0058121. doi: 10.1128/mSphere.00581-21.
10
High-throughput characterization of protein-protein interactions by reprogramming yeast mating.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12166-12171. doi: 10.1073/pnas.1705867114. Epub 2017 Oct 31.

引用本文的文献

3
Light-inducible protein degradation in with the LOVdeg tag.
Elife. 2024 Jan 25;12:RP87303. doi: 10.7554/eLife.87303.
4
High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.
Commun Biol. 2023 Nov 24;6(1):1192. doi: 10.1038/s42003-023-05532-4.
5
Quantitative insights in tissue growth and morphogenesis with optogenetics.
Phys Biol. 2023 Sep 28;20(6):061001. doi: 10.1088/1478-3975/acf7a1.
6
Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.
ACS Synth Biol. 2023 Jul 21;12(7):1943-1951. doi: 10.1021/acssynbio.3c00215. Epub 2023 Jul 11.
8
Protein dynamics provide mechanistic insights about epistasis among common missense polymorphisms.
Biophys J. 2023 Jul 25;122(14):2938-2947. doi: 10.1016/j.bpj.2023.01.037. Epub 2023 Feb 2.
9
Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast.
ACS Synth Biol. 2023 Jan 20;12(1):71-82. doi: 10.1021/acssynbio.2c00338. Epub 2022 Dec 19.
10
CyberSco.Py an open-source software for event-based, conditional microscopy.
Sci Rep. 2022 Jul 8;12(1):11579. doi: 10.1038/s41598-022-15207-5.

本文引用的文献

1
Balancing a genetic toggle switch by real-time feedback control and periodic forcing.
Nat Commun. 2017 Nov 17;8(1):1671. doi: 10.1038/s41467-017-01498-0.
2
A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.
Cell Syst. 2017 Jan 25;4(1):109-120.e11. doi: 10.1016/j.cels.2016.12.001. Epub 2017 Jan 5.
4
In Vivo Real-Time Control of Gene Expression: A Comparative Analysis of Feedback Control Strategies in Yeast.
ACS Synth Biol. 2016 Feb 19;5(2):154-62. doi: 10.1021/acssynbio.5b00135. Epub 2015 Dec 4.
5
Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation.
PLoS One. 2015 Jun 17;10(6):e0128443. doi: 10.1371/journal.pone.0128443. eCollection 2015.
6
Cellular noise suppression by the regulator of G protein signaling Sst2.
Mol Cell. 2014 Jul 3;55(1):85-96. doi: 10.1016/j.molcel.2014.05.019. Epub 2014 Jun 19.
7
Long-term model predictive control of gene expression at the population and single-cell levels.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14271-6. doi: 10.1073/pnas.1206810109. Epub 2012 Aug 14.
8
Negative feedback enhances robustness in the yeast polarity establishment circuit.
Cell. 2012 Apr 13;149(2):322-33. doi: 10.1016/j.cell.2012.03.012.
9
In silico feedback for in vivo regulation of a gene expression circuit.
Nat Biotechnol. 2011 Nov 6;29(12):1114-6. doi: 10.1038/nbt.2018.
10
Light-based feedback for controlling intracellular signaling dynamics.
Nat Methods. 2011 Sep 11;8(10):837-9. doi: 10.1038/nmeth.1700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验