Staalsen N H, Hasenkam J M, Winther J, Ulrich M, Pedersen E M
Department of Thoracic and Cardiovascular Surgery, Aarhus University Hospital, Denmark.
Heart Vessels. 1993;8(4):194-202. doi: 10.1007/BF01744742.
Earlier studies using hot-film anemometry in pigs have revealed skewed tangentially rotating velocity profiles in the ascending aorta during systole. The reason for this phenomenon has been postulated to be caused by the left ventricular contraction pattern. Therefore, the aim of this study was to investigate the influence of the left ventricular contraction pattern on the velocity fields in the ascending aorta of pigs. We used a 10 MHz perivascular pulsed Doppler ultrasound system to measure point blood velocities at two axial locations over the entire cross sectional area in the ascending aorta of 90 kg pigs. The axial component of the velocity profiles was visualized dynamically by computerized 3-dimensional animation techniques. Changing left ventricular contraction patterns were accomplished by reversible occlusion of either the left anterior descending or right posterior descending coronary artery. The axial development of the systolic rotating and skewed velocity profiles in the ascending aorta was described. The appearance of the systolic velocity profiles were virtually unaffected by changes in left ventricular contraction pattern.