Suppr超能文献

Effect of glucocorticosteroid treatment on intracellular calcium homeostasis in mouse lymphoma cells.

作者信息

Lam M, Dubyak G, Distelhorst C W

机构信息

Ireland Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4937.

出版信息

Mol Endocrinol. 1993 May;7(5):686-93. doi: 10.1210/mend.7.5.8316252.

Abstract

There is growing evidence for the involvement of Ca2+ in the programmed cell death (apoptosis) of lymphocytes, but the nature of glucocorticoid-induced Ca2+ fluxes and their role in the cell death pathway are poorly understood. In the study reported here, we assessed the effect of glucocorticoid treatment on intracellular Ca2+ homeostasis in W7MG1 mouse lymphoma cells. Levels of cytosolic Ca2+ were measured using the intracellular Ca2+ indicator fura2 AM, and total cellular Ca2+ was measured by atomic absorbance spectroscopy. The level of Ca2+ within internal stores, including the endoplasmic reticulum (ER), was estimated by measuring the increase in cytosolic Ca2+ induced by either ionomycin, an ionophore that mobilizes Ca2+ from a variety of internal stores, and by thapsigargin, a specific inhibitor of the ER-associated Ca(2+)-ATPase that mobilizes Ca2+ from the ER. Glucocorticoid treatment induced a significant decrease in ionomycin- and thapsigargin-mobilizable Ca2+ stores that was accompanied by an initial decrease in total cellular Ca2+, followed by a modest increase in both total cellular Ca2+ and cytosolic Ca2+. The glucocorticoid-induced depletion of internal Ca2+ stores was receptor mediated and occurred after a delay corresponding to the time required for glucocorticoid receptor complexes to regulate gene transcription. Mobilization of ER-associated Ca2+ stores by thapsigargin treatment induced DNA fragmentation and cell death similar to that observed after glucocorticoid treatment. These findings suggest that a mobilization of Ca2+ from internal stores may be a critical step in the apoptotic pathway of mouse lymphoma cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验