Zadák J, Unbehauen R
Lehrstuhl für Allgemeine und Theoretische Elektrotechnik, Universität Erlangen-Nürnberg, Germany.
Biol Cybern. 1993;68(6):545-52. doi: 10.1007/BF00200814.
Cochlear neuroprostheses strive to restore the sensation of hearing to patients with a profound sensorineural deafness. They exhibit a stimulation of the surviving auditory nerve neurons by electrical currents delivered through electrodes placed on or within the cochlea. The present article describes a new method for an efficient derivation of the required information from the incoming speech signal necessary for the implant stimulation. Also some realization aspects of the new approach are addressed. In the new strategy, a multilayer neural network is employed in the formant frequency estimation having some suitable speech signal descriptors as particular input signals. The proposed method allows us a fast formant frequency estimation necessary for the implant stimulation. With the developed strategy, the prosthesis can be adjusted to the environment which the patient is supposed to live in. Moreover, the neural network concept offers us an alternative for dealing with the areas of neural loss or "holes" in the frequency map of the patient's ear.
人工耳蜗致力于为重度感音神经性耳聋患者恢复听觉。它们通过置于耳蜗上或耳蜗内的电极所传递的电流来刺激存活的听神经神经元。本文描述了一种从植入刺激所需的输入语音信号中高效提取必要信息的新方法。同时还讨论了新方法的一些实现方面。在新策略中,在共振峰频率估计中采用多层神经网络,将一些合适的语音信号描述符作为特定输入信号。所提出的方法使我们能够快速进行植入刺激所需的共振峰频率估计。通过所开发的策略,假体可以根据患者预期生活的环境进行调整。此外,神经网络概念为处理患者耳部频率图中的神经损失区域或“空洞”提供了一种替代方法。