Suppr超能文献

Characteristics of glutamine transport in primary tissue culture of rat skeletal muscle.

作者信息

Tadros L B, Taylor P M, Rennie M J

机构信息

Department of Anatomy and Physiology, University of Dundee, United Kingdom.

出版信息

Am J Physiol. 1993 Jul;265(1 Pt 1):E135-44. doi: 10.1152/ajpendo.1993.265.1.E135.

Abstract

Glutamine transport was studied in preconfluent monolayered, mononucleated myoblasts (4 days old) and in fused, multinucleated, differentiated myotubes (10 days old), both prepared from neonatal rat skeletal muscle. The initial (60 s) rate of 50 microM glutamine uptake in myoblasts and myotubes was stereospecific, saturable, and largely (80%) Na+ dependent. At glutamine concentrations of 0.01-1 mM, Na(+)-dependent uptake showed saturation kinetics: in myoblasts, the Michaelis constant (Km) was 197 +/- 38 microM, maximum velocity (Vmax) was 1,165 +/- 60 pmol.min-1.mg protein-1; in myotubes, Km was 174 +/- 51 microM and Vmax was 1,435 +/- 47 pmol.min-1.mg protein-1. The Na(+)-dependent glutamine uptake was Li+ tolerant in both myoblasts and myotubes. The Na(+)-dependent uptake of 50 microM L-[3H]glutamine was investigated in the presence of various amino acids at 0.01-10 mM. Histidine and asparagine competitively inhibited glutamine uptake, but inhibition by serine was noncompetitive; glutamate, arginine, leucine, and 2-aminobicyclo(2,2,1)heptane-2-carboxylate (BCH) had no significant inhibitory effects; 2-(methyl-amino)isobutyrate (MeAIB) caused a small but significant inhibition. In parallel with a stimulation of glucose transport, addition of insulin stimulated Na(+)-dependent glutamine uptake within 1 h by a maximum of 27% in myoblasts and 42% in myotubes (half-maximal stimulation at 0.3 nM insulin). Glucagon had no effect. Kinetic analysis revealed that the insulin-stimulated increase in glutamine transport was due to a Vmax effect, which was cycloheximide inhibitable. The insulin-stimulated increase was Li+ tolerant and not inhibited by MeAIB or cysteine at 1 mM. The results indicate that the predominant glutamine transporter of neonatal rat skeletal muscle cells in primary tissue culture in System Nm. System Nm also appears to be the major insulin-sensitive glutamine transport component in skeletal muscle. Primary muscle culture appears to be a useful preparation for studying glutamine transport and its regulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验