Hayes B K, Freeze H H, Varki A
Glycobiology Program, University of California, San Diego, La Jolla 92093.
J Biol Chem. 1993 Aug 5;268(22):16139-54.
During short incubations of a Golgi apparatus-enriched subcellular fraction from rat liver with UDP-[3H]GlcNAc, label is efficiently transferred to endogenous acceptors. Most of the macromolecular radioactivity is specifically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, indicating that it is mainly associated with N-linked oligosaccharides. The glycoprotein acceptors are resistant to proteases unless detergent is added in amounts greater than the critical micellar concentration. This shows that the acceptors are within the lumen of intact compartments, which have the correct topological orientation expected for the Golgi apparatus in intact cells. Structural characterization of the radiolabeled N-linked oligosaccharides shows a variety of distinct neutral and anionic species. The neutral chains include bi-, tri-, and tetra-antennary molecules with terminal beta-[3H] GlcNAc residues. In vitro sialylation shows that some of the tetra-antennary chains have beta 1,3-linked Gal residues on their unlabeled antennae. An unknown modification appears to block the action of beta-galactosidase on these galactosylated oligosaccharides. Chasing the labeling reaction with a mixtures of UDP-Gal, CMP-Neu5Ac, and adenosine 3'-phosphate,5'-phosphosulfate causes an increase in the percent of radiolabeled anionic oligosaccharides. Most of the negative charge is due to sialic acid (Sia), and some appears to be in phosphodiester-linked [3H]GlcNAc. The sialylated oligosaccharides are a mixture of bi-, tri-, and tetra-antennary species with 1-3-Sia residues, and some of the [3H]GlcNAc residues are directly covered with unlabeled Gal and Sia residues. This in vitro approach should recapitulate reactions that occur in the biosynthesis of N-linked oligosaccharides in the Golgi apparatus of the intact cell. Since the conditions during labeling do not permit inter-compartmental transport, the oligosaccharides produced should represent the biosynthetic capabilities of individual Golgi compartments. Evidence is presented for a functional association of GlcNAc transferases I, II, and alpha-mannosidase II, with separation from GlcNAc transferase IV and/or V. The structures also indicate co-compartmentalization of several GlcNAc transferase(s) with beta-galactosyltransferase(s) and sialyltransferase(s). The compartmental organization of the Golgi apparatus is discussed in light of these findings.
将大鼠肝脏富含高尔基体的亚细胞组分与UDP-[3H]GlcNAc进行短时间温育时,放射性标记能有效地转移至内源性受体。大部分大分子放射性物质可被肽-N4-(N-乙酰-β-葡糖胺基)天冬酰胺酶特异性释放,这表明其主要与N-连接寡糖相关。糖蛋白受体对蛋白酶具有抗性,除非加入的去污剂超过临界胶束浓度。这表明受体位于完整隔室内的腔中,其拓扑取向与完整细胞中高尔基体的预期一致。放射性标记的N-连接寡糖的结构表征显示出多种不同的中性和阴离子种类。中性链包括具有末端β-[3H]GlcNAc残基的二、三、四天线分子。体外唾液酸化显示,一些四天线链在其未标记的天线臂上具有β1,3-连接的Gal残基。一种未知修饰似乎会阻断β-半乳糖苷酶对这些半乳糖基化寡糖的作用。用UDP-Gal、CMP-Neu5Ac和3'-磷酸腺苷5'-磷酸硫酸酯的混合物追踪标记反应会导致放射性标记的阴离子寡糖百分比增加。大部分负电荷归因于唾液酸(Sia),并且一些似乎存在于磷酸二酯连接的[3H]GlcNAc中。唾液酸化寡糖是具有1-3个Sia残基的二、三、四天线种类的混合物,并且一些[3H]GlcNAc残基直接被未标记的Gal和Sia残基覆盖。这种体外方法应能重现完整细胞高尔基体中N-连接寡糖生物合成过程中发生的反应。由于标记过程中的条件不允许隔室间运输,所产生的寡糖应代表单个高尔基体隔室的生物合成能力。文中提供了GlcNAc转移酶I、II和α-甘露糖苷酶II功能关联的证据,以及它们与GlcNAc转移酶IV和/或V分离的证据。这些结构还表明几种GlcNAc转移酶与β-半乳糖基转移酶和唾液酸转移酶共定位。根据这些发现讨论了高尔基体的隔室组织。