Suppr超能文献

大鼠肝微粒体中的三甲胺N-氧化和N-去甲基化作用

Trimethylamine N-oxygenation and N-demethylation in rat liver microsomes.

作者信息

Gut I, Conney A H

机构信息

National Institute of Public Health, Praha, Czech Republic.

出版信息

Biochem Pharmacol. 1993 Jul 20;46(2):239-44. doi: 10.1016/0006-2952(93)90409-p.

Abstract

The in vitro oxidation of trimethylamine (TMA) to TMA N-oxide (TMAO) and dimethylamine (DMA) was studied in rat liver microsomes. Pretreatment of rats with phenobarbital, 3-methylcholanthrene, ethanol or pregnenolone 16 alpha-carbonitrile had little or no effect on the liver microsomal metabolism of TMA to TMAO or DMA. Changing the atmosphere in the incubation vessel from 20% oxygen/80% nitrogen (air) to 100% oxygen had a selective stimulatory effect on the N-oxygenation of TMA but did not affect TMA N-demethylation. In addition, the Km for TMA N-demethylation was 5-fold higher than for the N-oxygenation reaction. The results of these studies suggest that the enzyme systems responsible for N-demethylation and N-oxygenation are different and that they are under different regulatory control. Carbon monoxide (CO/O2 = 80/20) had little or no inhibitory effect on either the N-demethylation or N-oxygenation of TMA by liver microsomes from control or pregnenolone 16 alpha-carbonitrile-treated rats. Additional studies indicated that methimazole, an inhibitor of FAD-containing monooxygenase (FMO), was a potent inhibitor of TMA oxidation. Preincubation of liver microsomes from control or pregnenolone 16 alpha-carbonitrile-treated rats at 37 degrees for 10 min without NADP(H) (a procedure that irreversibly inactivated FMO activity) resulted in > 95% inhibition of TMA N-demethylation and N-oxygenation, and this inhibition was prevented by including a NADPH-generating system in the preincubation medium (a procedure for preventing the thermal inactivation of FMO activity). The data suggest that FMOs are the major enzymes responsible for N-demethylation and N-oxygenation of TMA in rat liver microsomes.

摘要

在大鼠肝微粒体中研究了三甲胺(TMA)体外氧化生成氧化三甲胺(TMAO)和二甲胺(DMA)的过程。用苯巴比妥、3 - 甲基胆蒽、乙醇或孕烯醇酮16α - 腈预处理大鼠,对肝微粒体将TMA代谢为TMAO或DMA的过程几乎没有影响。将孵育容器中的气体氛围从20%氧气/80%氮气(空气)改为100%氧气,对TMA的N - 氧化有选择性刺激作用,但不影响TMA的N - 去甲基化。此外,TMA N - 去甲基化的米氏常数(Km)比N - 氧化反应高5倍。这些研究结果表明,负责N - 去甲基化和N - 氧化的酶系统不同,且受到不同的调控。一氧化碳(CO/O2 = 80/20)对对照或孕烯醇酮16α - 腈处理大鼠的肝微粒体对TMA的N -去甲基化或N - 氧化几乎没有抑制作用。进一步的研究表明,含黄素腺嘌呤二核苷酸单加氧酶(FMO)的抑制剂甲巯咪唑是TMA氧化的有效抑制剂。在37℃下将对照或孕烯醇酮16α - 腈处理大鼠的肝微粒体在无烟酰胺腺嘌呤二核苷酸磷酸(NADP(H))的情况下预孵育10分钟(此过程不可逆地使FMO活性失活),导致TMA N - 去甲基化和N - 氧化受到>95%的抑制,而在预孵育培养基中加入烟酰胺腺嘌呤二核苷酸磷酸生成系统(一种防止FMO活性热失活的方法)可防止这种抑制。数据表明,FMO是大鼠肝微粒体中负责TMA N - 去甲基化和N - 氧化的主要酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验