Suppr超能文献

医学成像中的数据融合:多模态和多患者图像的合并、结构识别及三维显示方面

Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects.

作者信息

Barillot C, Lemoine D, Le Briquer L, Lachmann F, Gibaud B

机构信息

INSERM U335, Faculté de Médecine, Université de Rennes I, France.

出版信息

Eur J Radiol. 1993 Jun;17(1):22-7. doi: 10.1016/0720-048x(93)90024-h.

Abstract

Data fusion in medical imaging can be seen into two ways (i) multisensors fusion of anatomical and functional information and (ii) interpatient data fusion by means of warping models. These two aspects set the methodological framework necessary to perform anatomical modelling especially when concerning the modelling of brain structures. The major relevance of the work presented here concerns the interpretation of multimodal 3D neuro-anatomical data bases. Three types of data fusion problems are considered in this paper. The first one concerns the problem of data combination which includes multimodal registration (multisensor fusion applied to CT, MRI, DSA, PET, SPECT, or MEG). In particular, the problem of warping patient data to an anatomical atlas is reviewed and a solution is proposed. The second problem of data fusion addressed in this paper is the identification of anatomical structures by means of image analysis methods. Two techniques have been developed. The first one deals with the analysis of image geometrical features to end up with the determination of a fuzzy mask to label the structure of interest. The second technique consists of labelling major cerebral structures by means of statistical image features associated with relaxation techniques. Finally, the paper presents a review of up to date 3D display techniques with a special emphasis on volume rendering and 3D display of combined data.

摘要

医学成像中的数据融合可从两个方面来看

(i)解剖学和功能信息的多传感器融合,以及(ii)通过变形模型进行患者间数据融合。这两个方面构成了进行解剖学建模所需的方法框架,尤其是在涉及脑结构建模时。本文所呈现工作的主要意义在于对多模态3D神经解剖数据库的解读。本文考虑了三种类型的数据融合问题。第一个问题涉及数据组合问题,其中包括多模态配准(应用于CT、MRI、DSA、PET、SPECT或MEG的多传感器融合)。特别地,回顾了将患者数据变形到解剖图谱的问题并提出了一种解决方案。本文所探讨的数据融合的第二个问题是通过图像分析方法识别解剖结构。已开发出两种技术。第一种技术处理图像几何特征分析,最终确定一个模糊掩码来标记感兴趣的结构。第二种技术包括通过与弛豫技术相关的统计图像特征来标记主要脑结构。最后,本文对最新的3D显示技术进行了综述,特别强调了体绘制和组合数据的3D显示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验