Leibniz Institute of Photonic Technology, Member of Leibniz-Research Alliance "Health Technologies", Albert-Einstein-Straße 9, 07745 Jena, Germany.
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Molecules. 2022 Nov 2;27(21):7448. doi: 10.3390/molecules27217448.
Data fusion aims to provide a more accurate description of a sample than any one source of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining data from multiple sources. Both aim to improve the characterization of samples and might improve clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved over the last decades in data fusion approaches in the context of the medical and biomedical fields. We collected approaches for interpreting multiple sources of data in different combinations: image to image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We found that the most prevalent combination is the image-to-image fusion and that most data fusion approaches were applied together with deep learning or machine learning methods.
数据融合旨在提供比任何单一数据源更准确的样本描述。同时,通过结合来自多个来源的数据,数据融合最小化了结果的不确定性。两者都旨在改善样本的特征描述,并可能改善临床诊断和预后。在本文中,我们概述了过去几十年中在医学和生物医学领域中数据融合方法所取得的进展。我们收集了用于以不同组合解释多种数据源的方法:图像到图像、图像到生物标志物、光谱到图像、光谱到光谱、光谱到生物标志物等。我们发现,最常见的组合是图像到图像融合,并且大多数数据融合方法都与深度学习或机器学习方法一起应用。