Suppr超能文献

利用饱和遗传图谱检测标记-QTL连锁关系并估计QTL基因效应和图谱位置。

Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map.

作者信息

Darvasi A, Weinreb A, Minke V, Weller J I, Soller M

机构信息

Department of Genetics, Alexander Silberman Life Sciences Institute, Hebrew University of Jerusalem, Israel.

出版信息

Genetics. 1993 Jul;134(3):943-51. doi: 10.1093/genetics/134.3.943.

Abstract

A simulation study was carried out on a backcross population in order to determine the effect of marker spacing, gene effect and population size on the power of marker-quantitative trait loci (QTL) linkage experiments and on the standard error of maximum likelihood estimates (MLE) of QTL gene effect and map location. Power of detecting a QTL was virtually the same for a marker spacing of 10 cM as for an infinite number of markers and was only slightly decreased for marker spacing of 20 or even 50 cM. The advantage of using interval mapping as compared to single-marker analysis was slight. "Resolving power" of a marker-QTL linkage experiment was defined as the 95% confidence interval for the QTL map location that would be obtained when scoring an infinite number of markers. It was found that reducing marker spacing below the resolving power did not add appreciably to narrowing the confidence interval. Thus, the 95% confidence interval with infinite markers sets the useful marker spacing for estimating QTL map location for a given population size and estimated gene effect.

摘要

为了确定标记间距、基因效应和群体大小对标记-数量性状基因座(QTL)连锁实验的功效以及QTL基因效应和图谱位置的最大似然估计(MLE)标准误的影响,对一个回交群体进行了模拟研究。对于10 cM的标记间距,检测QTL的功效与标记数量无限时几乎相同,而对于20 cM甚至50 cM的标记间距,功效仅略有下降。与单标记分析相比,使用区间作图的优势并不明显。标记-QTL连锁实验的“分辨力”定义为在对无限数量的标记进行评分时获得的QTL图谱位置的95%置信区间。结果发现,将标记间距减小到分辨力以下并不会显著缩小置信区间。因此,对于给定的群体大小和估计的基因效应,具有无限标记的95%置信区间确定了用于估计QTL图谱位置的有用标记间距。

相似文献

2
A simple method to calculate resolving power and confidence interval of QTL map location.
Behav Genet. 1997 Mar;27(2):125-32. doi: 10.1023/a:1025685324830.
5
Improving quantitative trait loci mapping resolution in experimental crosses by the use of genotypically selected samples.
Genetics. 2005 May;170(1):401-8. doi: 10.1534/genetics.104.033746. Epub 2005 Mar 21.
6
Fine-mapping of quantitative trait loci in half-sib families using current recombinations.
Genet Res. 2000 Aug;76(1):87-104. doi: 10.1017/s0016672300004638.
7
An updated 'Essex' by 'Forrest' linkage map and first composite interval map of QTL underlying six soybean traits.
Theor Appl Genet. 2006 Oct;113(6):1015-26. doi: 10.1007/s00122-006-0361-8. Epub 2006 Sep 5.
8
9
The effect of an imprecise map on interval mapping QTLs.
Genet Res. 2004 Aug;84(1):47-55. doi: 10.1017/s0016672304006974.
10
Linkage mapping bovine EST-based SNP.
BMC Genomics. 2005 May 19;6:74. doi: 10.1186/1471-2164-6-74.

引用本文的文献

4
Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding.
Plants (Basel). 2023 May 11;12(10):1956. doi: 10.3390/plants12101956.
6
SeSAM: software for automatic construction of order-robust linkage maps.
BMC Bioinformatics. 2022 Nov 19;23(1):499. doi: 10.1186/s12859-022-05045-7.
7
stuart: an R package for the curation of SNP genotypes from experimental crosses.
G3 (Bethesda). 2022 Nov 4;12(11). doi: 10.1093/g3journal/jkac219.
8
Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach.
Theor Appl Genet. 2022 Jan;135(1):81-106. doi: 10.1007/s00122-021-03953-5. Epub 2021 Oct 8.
9
Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3.
G3 (Bethesda). 2021 Dec 8;11(12). doi: 10.1093/g3journal/jkab341.
10
Angular Leaf Spot Resistance Associated With Different Plant Growth Stages in Common Bean.
Front Plant Sci. 2021 Apr 13;12:647043. doi: 10.3389/fpls.2021.647043. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验