Suppr超能文献

通过使用基因分型选择样本提高实验杂交中数量性状基因座定位分辨率。

Improving quantitative trait loci mapping resolution in experimental crosses by the use of genotypically selected samples.

作者信息

Xu Zongli, Zou Fei, Vision Todd J

机构信息

Department of Biology, University of North Carolina, Chapel Hill, 27599, USA.

出版信息

Genetics. 2005 May;170(1):401-8. doi: 10.1534/genetics.104.033746. Epub 2005 Mar 21.

Abstract

One of the key factors contributing to the success of a quantitative trait locus (QTL) mapping experiment is the precision with which QTL positions can be estimated. We show, using simulations, that QTL mapping precision for an experimental cross can be increased by the use of a genotypically selected sample of individuals rather than an unselected sample of the same size. Selection is performed using a previously described method that optimizes the complementarity of the crossover sites within the sample. Although the increase in precision is accompanied by a decrease in QTL detection power at markers distant from QTL, only a modest increase in marker density is needed to obtain equivalent power over the whole map. Selected samples also show a slight reduction in the number of false-positive QTL. We find that two features of selected samples independently contribute to these effects: an increase in the number of crossover sites and increased evenness in crossover spacing. We provide an empirical formula for crossover enrichment in selected samples that is useful in experimental design and data analysis. For QTL studies in which the phenotyping is more of a limiting factor than the generation of individuals and the scoring of genotypes, selective sampling is an attractive strategy for increasing genome-wide QTL map resolution.

摘要

数量性状基因座(QTL)定位实验成功的关键因素之一是QTL位置的估计精度。我们通过模拟表明,对于实验杂交,使用基因型选择的个体样本而非相同大小的未选择样本,可以提高QTL定位精度。选择使用先前描述的方法进行,该方法可优化样本内交叉位点的互补性。尽管精度的提高伴随着远离QTL的标记处QTL检测能力的下降,但只需适度增加标记密度,就能在整个图谱上获得等效的能力。选择样本还显示假阳性QTL的数量略有减少。我们发现选择样本的两个特征独立地导致了这些效应:交叉位点数量的增加和交叉间距的均匀性增加。我们提供了一个用于选择样本中交叉富集的经验公式,该公式在实验设计和数据分析中很有用。对于表型分析比个体生成和基因型评分更具限制因素的QTL研究,选择性抽样是提高全基因组QTL图谱分辨率的一种有吸引力的策略。

相似文献

1
Improving quantitative trait loci mapping resolution in experimental crosses by the use of genotypically selected samples.
Genetics. 2005 May;170(1):401-8. doi: 10.1534/genetics.104.033746. Epub 2005 Mar 21.
2
Improving QTL mapping resolution based on genotypic sampling--a case using a RIL population.
Yi Chuan Xue Bao. 2006 Jul;33(7):617-24. doi: 10.1016/S0379-4172(06)60091-7.
5
The use of MapPop1.0 for choosing a QTL mapping sample from an advanced backcross population.
Theor Appl Genet. 2007 Apr;114(6):1019-28. doi: 10.1007/s00122-006-0495-8. Epub 2007 Feb 14.
7
Quantitative trait locus study design from an information perspective.
Genetics. 2005 May;170(1):447-64. doi: 10.1534/genetics.104.038612. Epub 2005 Mar 21.
9
Mapping quantitative trait loci in noninbred mosquito crosses.
Genetics. 2006 Apr;172(4):2293-308. doi: 10.1534/genetics.105.050419. Epub 2006 Jan 16.
10
QTL mapping using high-throughput sequencing.
Methods Mol Biol. 2015;1284:257-85. doi: 10.1007/978-1-4939-2444-8_13.

引用本文的文献

1
Genome-wide association and selection studies for pod dehiscence resistance in the USDA soybean germplasm collection.
PLoS One. 2025 Mar 28;20(3):e0318815. doi: 10.1371/journal.pone.0318815. eCollection 2025.
2
Enhanced recombination empowers the detection and mapping of Quantitative Trait Loci.
Commun Biol. 2024 Jul 8;7(1):829. doi: 10.1038/s42003-024-06530-w.
4
Developmental Pleiotropy Shaped the Roots of the Domesticated Common Bean ().
Plant Physiol. 2019 Jul;180(3):1467-1479. doi: 10.1104/pp.18.01509. Epub 2019 May 6.
5
Linkage-based genome assembly improvement of oil palm (Elaeis guineensis).
Sci Rep. 2019 Apr 29;9(1):6619. doi: 10.1038/s41598-019-42989-y.
6
Characterization of Transcription Factor Gene Conferring Drought Tolerance in Rice.
Front Plant Sci. 2018 Feb 1;9:94. doi: 10.3389/fpls.2018.00094. eCollection 2018.
7
Confirmation of delayed canopy wilting QTLs from multiple soybean mapping populations.
Theor Appl Genet. 2015 Oct;128(10):2047-65. doi: 10.1007/s00122-015-2566-1. Epub 2015 Jul 12.
10
The impact of recombination on short-term selection gain in plant breeding experiments.
Theor Appl Genet. 2013 Sep;126(9):2299-312. doi: 10.1007/s00122-013-2136-3. Epub 2013 Jun 13.

本文引用的文献

1
Inbreeding and Linkage.
Genetics. 1931 Jul;16(4):357-74. doi: 10.1093/genetics/16.4.357.
2
Selective phenotyping for increased efficiency in genetic mapping studies.
Genetics. 2004 Dec;168(4):2285-93. doi: 10.1534/genetics.104.027524.
3
High-resolution mapping of quantitative trait loci by selective recombinant genotyping.
Genetics. 2003 Aug;164(4):1657-66. doi: 10.1093/genetics/164.4.1657.
6
Map-based cloning of quantitative trait loci: progress and prospects.
Genet Res. 2001 Dec;78(3):213-8. doi: 10.1017/s0016672301005456.
7
The genetic architecture of quantitative traits.
Annu Rev Genet. 2001;35:303-39. doi: 10.1146/annurev.genet.35.102401.090633.
8
9
Selective mapping: a strategy for optimizing the construction of high-density linkage maps.
Genetics. 2000 May;155(1):407-20. doi: 10.1093/genetics/155.1.407.
10
Statistical methods for mapping quantitative trait loci from a dense set of markers.
Genetics. 1999 Jan;151(1):373-86. doi: 10.1093/genetics/151.1.373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验