Suppr超能文献

Traumatic brain injury, hemorrhagic shock, and fluid resuscitation: effects on intracranial pressure and brain compliance.

作者信息

Hariri R J, Firlick A D, Shepard S R, Cohen D S, Barie P S, Emery J M, Ghajar J B

机构信息

Aitken Neurosurgery Laboratory, Department of Surgery, Cornell University Medical College, New York, New York.

出版信息

J Neurosurg. 1993 Sep;79(3):421-7. doi: 10.3171/jns.1993.79.3.0421.

Abstract

Intracranial hypertension following traumatic brain injury is associated with considerable morbidity and mortality. Hemorrhagic hypovolemia commonly coexists with head injury in this population of patients. Therapy directed at correcting hypovolemic shock includes vigorous volume expansion with crystalloid solutions. It is hypothesized that, following traumatic brain injury, cerebrovascular dysfunction results in rapid loss of brain compliance, resulting in increased sensitivity to cerebrovascular venous pressure. Increased central venous pressure (CVP) occurring with vigorous crystalloid resuscitation may therefore contribute to the loss of brain compliance and the development of intracranial hypertension. The authors tested this hypothesis in miniature swine subjected to traumatic brain injury, hemorrhage, and resuscitation. Elevated CVP following resuscitation from hemorrhage to a high CVP significantly worsened intracranial hypertension in animals with concurrent traumatic brain injury, as compared to animals subjected to traumatic brain injury alone (mean +/- standard error of the mean: 33.0 +/- 2.0 vs. 20.0 +/- 2.0 mm Hg, p < 0.05) or to animals subjected to the combination of traumatic brain injury, hemorrhage, and resuscitation to a low CVP (33.0 +/- 2.0 vs. 24.0 +/- 2.0 mm Hg, p < 0.05). These data support the hypothesis that reduction in brain compliance can occur secondary to elevation of CVP following resuscitation from hemorrhagic shock. This may worsen intracranial hypertension in patients with traumatic brain injury and hemorrhagic shock.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验