Suppr超能文献

Spatial features of calcium transients during early and delayed afterdepolarizations.

作者信息

Miura M, Ishide N, Oda H, Sakurai M, Shinozaki T, Takishima T

机构信息

First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan.

出版信息

Am J Physiol. 1993 Aug;265(2 Pt 2):H439-44. doi: 10.1152/ajpheart.1993.265.2.H439.

Abstract

Although changes in intracellular Ca2+ concentration ([Ca2+]i) are spatially heterogeneous during spontaneous contraction in mammalian cardiac muscle, it has not yet been observed how [Ca2+]i changes spatially within cardiac myocytes during delayed (DADs) and early (EADs) afterdepolarizations. The aim of this study is to characterize the spatial features of the increase in [Ca2+]i during such afterdepolarizations and to understand the ionic mechanisms responsible for them. Myocytes were enzymatically isolated from guinea pig ventricles and loaded with fura 2-acetoxymethylester, the Ca2+ fluorescence indicator dye. Membrane potential was recorded with a conventional microelectrode technique, and spatiotemporal changes in fura 2 fluorescence and cell length were recorded using a digital television system. After superfusion with potassium-free Tyrode solution, DADs and EADs were induced. During DADs, fluorescence transients were heterogeneous within myocytes (n = 11). Furthermore, they often propagated within myocytes as if they were "waves." In contrast, during EADs, fluorescence transients showed no waves within myocytes but rather showed synchronous changes throughout the myocytes (n = 15). The results of this study suggest that the spatial features of the increase in [Ca2+]i differ between the DADs and EADs. We concluded from these differing features that the ionic mechanisms responsible for the two triggered activities are different.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验