Gaeta Stephen A, Bub Gil, Abbott Geoffrey W, Christini David J
Greenberg Division of Cardiology, Weill Cornell Medical College, New York 10065, USA.
Circ Res. 2009 Aug 14;105(4):335-42. doi: 10.1161/CIRCRESAHA.109.197590. Epub 2009 Jul 23.
Cardiac repolarization alternans is an arrhythmogenic rhythm disturbance, manifested in individual myocytes as a beat-to-beat alternation of action potential durations and intracellular calcium transient magnitudes. Recent experimental studies have reported "subcellular alternans," in which distinct regions of an individual cell are seen to have counterphase calcium alternations, but the mechanism by which this occurs is not well understood. Although previous theoretical work has proposed a possible dynamical mechanism for subcellular alternans formation, no direct evidence for this mechanism has been reported in vitro. Rather, experimental studies have generally invoked fixed subcellular heterogeneities in calcium-cycling characteristics as the mechanism of subcellular alternans formation.
In this study, we have generalized the previously proposed dynamical mechanism to predict a simple pacing algorithm by which subcellular alternans can be induced in isolated cardiac myocytes in the presence or absence of fixed subcellular heterogeneity. We aimed to verify this hypothesis using computational modeling and to confirm it experimentally in isolated cardiac myocytes. Furthermore, we hypothesized that this dynamical mechanism may account for previous reports of subcellular alternans seen in statically paced, intact tissue.
Using a physiologically realistic computational model of a cardiac myocyte, we show that our predicted pacing algorithm induces subcellular alternans in a manner consistent with theoretical predictions. We then use a combination of real-time electrophysiology and fluorescent calcium imaging to implement this protocol experimentally and show that it robustly induces subcellular alternans in isolated guinea pig ventricular myocytes. Finally, we use computational modeling to demonstrate that subcellular alternans can indeed be dynamically induced during static pacing of 1D fibers of myocytes during tissue-level spatially discordant alternans.
Here we provide the first direct experimental evidence that subcellular alternans can be dynamically induced in cardiac myocytes. This proposed mechanism may contribute to subcellular alternans formation in the intact heart.
心脏复极交替是一种致心律失常的节律紊乱,在单个心肌细胞中表现为动作电位持续时间和细胞内钙瞬变幅度的逐搏交替。最近的实验研究报道了“亚细胞交替”,即单个细胞的不同区域出现反相钙交替,但这种现象发生的机制尚不清楚。尽管先前的理论工作提出了亚细胞交替形成的一种可能的动力学机制,但在体外尚未有该机制的直接证据报道。相反,实验研究通常将钙循环特征中固定的亚细胞异质性作为亚细胞交替形成的机制。
在本研究中,我们推广了先前提出的动力学机制,以预测一种简单的起搏算法,通过该算法可在存在或不存在固定亚细胞异质性的情况下,在分离的心肌细胞中诱导亚细胞交替。我们旨在使用计算建模验证这一假设,并在分离的心肌细胞中进行实验证实。此外,我们假设这种动力学机制可能解释先前在静态起搏的完整组织中观察到的亚细胞交替的报道。
使用心肌细胞的生理逼真计算模型,我们表明预测的起搏算法以与理论预测一致的方式诱导亚细胞交替。然后,我们结合实时电生理学和荧光钙成像在实验中实施该方案,并表明它能在分离的豚鼠心室肌细胞中可靠地诱导亚细胞交替。最后,我们使用计算建模证明,在组织水平的空间不协调交替期间,亚细胞交替确实可以在心肌细胞一维纤维的静态起搏过程中动态诱导。
在此,我们提供了首个直接实验证据,证明心肌细胞中的亚细胞交替可以被动态诱导。这种提出的机制可能有助于完整心脏中亚细胞交替的形成。