Suppr超能文献

心肌细胞亚细胞交替变化的动力学机制。

Dynamical mechanism for subcellular alternans in cardiac myocytes.

作者信息

Gaeta Stephen A, Bub Gil, Abbott Geoffrey W, Christini David J

机构信息

Greenberg Division of Cardiology, Weill Cornell Medical College, New York 10065, USA.

出版信息

Circ Res. 2009 Aug 14;105(4):335-42. doi: 10.1161/CIRCRESAHA.109.197590. Epub 2009 Jul 23.

Abstract

RATIONALE

Cardiac repolarization alternans is an arrhythmogenic rhythm disturbance, manifested in individual myocytes as a beat-to-beat alternation of action potential durations and intracellular calcium transient magnitudes. Recent experimental studies have reported "subcellular alternans," in which distinct regions of an individual cell are seen to have counterphase calcium alternations, but the mechanism by which this occurs is not well understood. Although previous theoretical work has proposed a possible dynamical mechanism for subcellular alternans formation, no direct evidence for this mechanism has been reported in vitro. Rather, experimental studies have generally invoked fixed subcellular heterogeneities in calcium-cycling characteristics as the mechanism of subcellular alternans formation.

OBJECTIVE

In this study, we have generalized the previously proposed dynamical mechanism to predict a simple pacing algorithm by which subcellular alternans can be induced in isolated cardiac myocytes in the presence or absence of fixed subcellular heterogeneity. We aimed to verify this hypothesis using computational modeling and to confirm it experimentally in isolated cardiac myocytes. Furthermore, we hypothesized that this dynamical mechanism may account for previous reports of subcellular alternans seen in statically paced, intact tissue.

METHODS AND RESULTS

Using a physiologically realistic computational model of a cardiac myocyte, we show that our predicted pacing algorithm induces subcellular alternans in a manner consistent with theoretical predictions. We then use a combination of real-time electrophysiology and fluorescent calcium imaging to implement this protocol experimentally and show that it robustly induces subcellular alternans in isolated guinea pig ventricular myocytes. Finally, we use computational modeling to demonstrate that subcellular alternans can indeed be dynamically induced during static pacing of 1D fibers of myocytes during tissue-level spatially discordant alternans.

CONCLUSION

Here we provide the first direct experimental evidence that subcellular alternans can be dynamically induced in cardiac myocytes. This proposed mechanism may contribute to subcellular alternans formation in the intact heart.

摘要

原理

心脏复极交替是一种致心律失常的节律紊乱,在单个心肌细胞中表现为动作电位持续时间和细胞内钙瞬变幅度的逐搏交替。最近的实验研究报道了“亚细胞交替”,即单个细胞的不同区域出现反相钙交替,但这种现象发生的机制尚不清楚。尽管先前的理论工作提出了亚细胞交替形成的一种可能的动力学机制,但在体外尚未有该机制的直接证据报道。相反,实验研究通常将钙循环特征中固定的亚细胞异质性作为亚细胞交替形成的机制。

目的

在本研究中,我们推广了先前提出的动力学机制,以预测一种简单的起搏算法,通过该算法可在存在或不存在固定亚细胞异质性的情况下,在分离的心肌细胞中诱导亚细胞交替。我们旨在使用计算建模验证这一假设,并在分离的心肌细胞中进行实验证实。此外,我们假设这种动力学机制可能解释先前在静态起搏的完整组织中观察到的亚细胞交替的报道。

方法与结果

使用心肌细胞的生理逼真计算模型,我们表明预测的起搏算法以与理论预测一致的方式诱导亚细胞交替。然后,我们结合实时电生理学和荧光钙成像在实验中实施该方案,并表明它能在分离的豚鼠心室肌细胞中可靠地诱导亚细胞交替。最后,我们使用计算建模证明,在组织水平的空间不协调交替期间,亚细胞交替确实可以在心肌细胞一维纤维的静态起搏过程中动态诱导。

结论

在此,我们提供了首个直接实验证据,证明心肌细胞中的亚细胞交替可以被动态诱导。这种提出的机制可能有助于完整心脏中亚细胞交替的形成。

相似文献

1
Dynamical mechanism for subcellular alternans in cardiac myocytes.
Circ Res. 2009 Aug 14;105(4):335-42. doi: 10.1161/CIRCRESAHA.109.197590. Epub 2009 Jul 23.
2
Feedback-control induced pattern formation in cardiac myocytes: a mathematical modeling study.
J Theor Biol. 2010 Oct 7;266(3):408-18. doi: 10.1016/j.jtbi.2010.06.041. Epub 2010 Jul 8.
3
Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.
Circulation. 2003 Nov 25;108(21):2704-9. doi: 10.1161/01.CIR.0000093276.10885.5B. Epub 2003 Oct 27.
4
Molecular correlates of repolarization alternans in cardiac myocytes.
J Mol Cell Cardiol. 2005 Sep;39(3):419-28. doi: 10.1016/j.yjmcc.2005.06.004.
5
Spatially discordant alternans in cardiomyocyte monolayers.
Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1417-25. doi: 10.1152/ajpheart.01233.2007. Epub 2008 Jan 25.
6
Formation of spatially discordant alternans due to fluctuations and diffusion of calcium.
PLoS One. 2013 Dec 31;8(12):e85365. doi: 10.1371/journal.pone.0085365. eCollection 2013.
7
Voltage and calcium dynamics both underlie cellular alternans in cardiac myocytes.
Biophys J. 2014 May 20;106(10):2222-32. doi: 10.1016/j.bpj.2014.03.048.
8
Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart.
Circ Res. 2009 Mar 13;104(5):639-49. doi: 10.1161/CIRCRESAHA.108.181909. Epub 2009 Jan 15.
9
Spatiotemporal intracellular calcium dynamics during cardiac alternans.
Chaos. 2009 Sep;19(3):037115. doi: 10.1063/1.3207835.
10
Oscillation in cycle length induces transient discordant and steady-state concordant alternans in the heart.
PLoS One. 2012;7(7):e40477. doi: 10.1371/journal.pone.0040477. Epub 2012 Jul 5.

引用本文的文献

1
Transition from alternating stripes to alternating labyrinths in oscillatory media.
Phys Rev E. 2025 Mar;111(3):L032201. doi: 10.1103/PhysRevE.111.L032201.
2
Overview of Cardiac Arrhythmias and Treatment Strategies.
Pharmaceuticals (Basel). 2023 Jun 6;16(6):844. doi: 10.3390/ph16060844.
3
Cardiac Alternans: From Bedside to Bench and Back.
Circ Res. 2023 Jan 6;132(1):127-149. doi: 10.1161/CIRCRESAHA.122.321668. Epub 2023 Jan 5.
4
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.
5
Synchronization of spatially discordant voltage and calcium alternans in cardiac tissue.
Phys Rev E. 2022 Aug;106(2-1):024406. doi: 10.1103/PhysRevE.106.024406.
6
Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going?
Front Physiol. 2022 Mar 8;13:834211. doi: 10.3389/fphys.2022.834211. eCollection 2022.
7
The Physiology and Pathophysiology of T-Tubules in the Heart.
Front Physiol. 2021 Sep 9;12:718404. doi: 10.3389/fphys.2021.718404. eCollection 2021.
8
Stability of spatially discordant repolarization alternans in cardiac tissue.
Chaos. 2020 Dec;30(12):123141. doi: 10.1063/5.0029209.
9
Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media.
PLoS Comput Biol. 2020 Oct 5;16(10):e1007931. doi: 10.1371/journal.pcbi.1007931. eCollection 2020 Oct.

本文引用的文献

1
Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart.
Circ Res. 2009 Mar 13;104(5):639-49. doi: 10.1161/CIRCRESAHA.108.181909. Epub 2009 Jan 15.
2
Cellular and subcellular alternans in the canine left ventricle.
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3506-16. doi: 10.1152/ajpheart.00757.2007. Epub 2007 Sep 28.
3
Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2109-18. doi: 10.1152/ajpheart.00609.2007. Epub 2007 Jun 22.
4
Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart.
Circ Res. 2006 Sep 29;99(7):e65-73. doi: 10.1161/01.RES.0000244087.36230.bf. Epub 2006 Sep 7.
5
From pulsus to pulseless: the saga of cardiac alternans.
Circ Res. 2006 May 26;98(10):1244-53. doi: 10.1161/01.RES.0000224540.97431.f0.
6
Control of electrical alternans in canine cardiac purkinje fibers.
Phys Rev Lett. 2006 Mar 17;96(10):104101. doi: 10.1103/PhysRevLett.96.104101.
7
Turing instability mediated by voltage and calcium diffusion in paced cardiac cells.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5670-5. doi: 10.1073/pnas.0511061103. Epub 2006 Mar 30.
8
Molecular correlates of repolarization alternans in cardiac myocytes.
J Mol Cell Cardiol. 2005 Sep;39(3):419-28. doi: 10.1016/j.yjmcc.2005.06.004.
9
Role of calcium cycling versus restitution in the mechanism of repolarization alternans.
Circ Res. 2004 Apr 30;94(8):1083-90. doi: 10.1161/01.RES.0000125629.72053.95. Epub 2004 Mar 11.
10
Mechanism of discordant T wave alternans in the in vivo heart.
J Cardiovasc Electrophysiol. 2003 Jun;14(6):632-8. doi: 10.1046/j.1540-8167.2003.03028.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验