Suppr超能文献

基于比较分子场分析预测药物分子的结合特性。

On the prediction of binding properties of drug molecules by comparative molecular field analysis.

作者信息

Klebe G, Abraham U

机构信息

BASF AG, Main Laboratory, Ludwigshafen, FRG.

出版信息

J Med Chem. 1993 Jan 8;36(1):70-80. doi: 10.1021/jm00053a009.

Abstract

Comparative molecular field analysis (CoMFA) has been applied to three different data sets of drug molecules binding to human rhinovirus 14 (HRV14), thermolysin and renin, respectively. Different structural alignments have been tested to predict binding properties. An alignment based on crystallographically determined coordinates of the inhibitors bound to the proteins has been compared with alignments obtained from multiple-fit and field-fit procedures. These methods are commonly used for systems where no reference to protein structural data is available. For HRV14, two different models, one based on experimental evidence and one based on a hypothetical alignment reveal moderate predictions of the binding constant of comparable quality. For thermolysin, hypothetical alignments allow a substantially better prediction than an alignment based on experimental evidence. The prediction of binding properties (expressed as delta G, delta H, and delta S) of renin inhibitors, which were aligned on the basis of crystallographic data from related inhibitors bound to the aspartyl protease endothiapepsin, gives evidence that only enthalpies (delta H) and not free enthalpies (delta G) or binding constants can be properly predicted by comparative molecular field analysis.

摘要

比较分子场分析(CoMFA)已分别应用于与人类鼻病毒14(HRV14)、嗜热菌蛋白酶和肾素结合的三类不同药物分子数据集。为预测结合特性,测试了不同的结构比对方法。将基于与蛋白质结合的抑制剂晶体学确定坐标的比对,与通过多重拟合和场拟合程序获得的比对进行了比较。这些方法通常用于无法参考蛋白质结构数据的系统。对于HRV14,两个不同的模型,一个基于实验证据,另一个基于假设比对,对结合常数的预测质量相当且适中。对于嗜热菌蛋白酶,假设比对能比基于实验证据的比对给出更好的预测。基于与天冬氨酰蛋白酶内硫霉素结合的相关抑制剂的晶体学数据进行比对的肾素抑制剂结合特性(以ΔG、ΔH和ΔS表示)预测表明,比较分子场分析只能正确预测焓(ΔH),而不能正确预测自由能(ΔG)或结合常数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验