Suppr超能文献

通过结合三维定量构效关系和基于结构的设计方法开发生物活性化合物。

Development of biologically active compounds by combining 3D QSAR and structure-based design methods.

作者信息

Sippl Wolfgang

机构信息

Institute for Pharmaceutical Chemistry, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.

出版信息

J Comput Aided Mol Des. 2002 Nov;16(11):825-30. doi: 10.1023/a:1023888813526.

Abstract

One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved--namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data.

摘要

药物设计计算方法的主要挑战之一是准确预测新型生物分子的结合亲和力。在本研究中,一种结合对接和3D-QSAR方法的自动化程序被应用于多个药物靶点。所开发的基于受体的3D-QSAR方法在几组配体上进行了测试,这些配体的靶蛋白三维结构已得到解析,即雌激素受体、乙酰胆碱酯酶和蛋白酪氨酸磷酸酶1B。使用对接程序AutoDock确定所研究配体的分子排列,并将其与相应蛋白质-配体复合物的X射线结构进行比较。随后,将获得的基于蛋白质的自动生成的配体排列作为应用GRID/GOLPE方法进行比较场分析的基础。利用GRID相互作用场并应用变量选择程序,获得了高度预测性的模型。预计基于受体的3D QSAR概念将成为分析高通量筛选以及虚拟筛选数据的有价值工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验