Martin L J, Blackstone C D, Levey A I, Huganir R L, Price D L
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196.
J Neurosci. 1993 May;13(5):2249-63. doi: 10.1523/JNEUROSCI.13-05-02249.1993.
The cellular distributions of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors within the rodent and nonhuman primate basal forebrain magnocellular complex (BFMC) were demonstrated immunocytochemically using anti-peptide antibodies that recognize glutamate receptor (GluR) subunit proteins (i.e., GluR1, GluR4, and a conserved region of GluR2, GluR3, and GluR4c). In both species, many large GluR1-positive neuronal perikarya and aspiny dendrites are present within the medial septal nucleus, the nucleus of the diagonal band of Broca, and the nucleus basalis of Meynert. In this population of neurons in rat and monkey, GluR2/3/4c and GluR4 immunoreactivities are less abundant than GluR1 immunoreactivity. In rat, GluR1 does not colocalize with ChAT, but, within many neurons, GluR1 does colocalize with GABA, glutamic acid decarboxylase (GAD), and parvalbumin immunoreactivities. GluR1- and GABA/GAD-positive neurons intermingle extensively with ChAT-positive neurons. In monkey, however, most GluR1-immunoreactive neurons express ChAT and calbindin-D28 immunoreactivities. The results reveal that noncholinergic GABAergic neurons, within the BFMC of rat, express AMPA receptors, whereas cholinergic neurons in the BFMC of monkey express AMPA receptors. Thus, the cellular localizations of the AMPA subtype of GluR are different within the BFMC of rat and monkey, suggesting that excitatory synaptic regulation of distinct subsets of BFMC neurons may differ among species. We conclude that, in the rodent, BFMC GABAergic neurons receive glutamatergic inputs, whereas cholinergic neurons either do not receive glutamatergic synapses or utilize GluR subtypes other than AMPA receptors. In contrast, in primate, basal forebrain cholinergic neurons are innervated directly by glutamatergic afferents and utilize AMPA receptors.
使用识别谷氨酸受体(GluR)亚基蛋白(即GluR1、GluR4以及GluR2、GluR3和GluR4c的保守区域)的抗肽抗体,通过免疫细胞化学方法证实了α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体在啮齿动物和非人类灵长类动物基底前脑大细胞复合体(BFMC)中的细胞分布。在这两个物种中,内侧隔核、布罗卡斜角带核和迈内特基底核内均存在许多大型的GluR1阳性神经元胞体和无棘树突。在大鼠和猴子的这群神经元中,GluR2/3/4c和GluR4免疫反应性不如GluR1免疫反应性丰富。在大鼠中,GluR1不与胆碱乙酰转移酶(ChAT)共定位,但在许多神经元内,GluR1与γ-氨基丁酸(GABA)、谷氨酸脱羧酶(GAD)和小白蛋白免疫反应性共定位。GluR1和GABA/GAD阳性神经元与ChAT阳性神经元广泛交织。然而,在猴子中,大多数GluR1免疫反应性神经元表达ChAT和钙结合蛋白-D28免疫反应性。结果表明,大鼠BFMC中的非胆碱能GABA能神经元表达AMPA受体,而猴子BFMC中的胆碱能神经元表达AMPA受体。因此,大鼠和猴子BFMC中GluR的AMPA亚型的细胞定位不同,这表明BFMC神经元不同亚群的兴奋性突触调节在不同物种间可能存在差异。我们得出结论,在啮齿动物中,BFMC GABA能神经元接受谷氨酸能输入,而胆碱能神经元要么不接受谷氨酸能突触,要么利用除AMPA受体以外的GluR亚型。相比之下,在灵长类动物中,基底前脑胆碱能神经元直接接受谷氨酸能传入神经支配并利用AMPA受体。