Suppr超能文献

一种用于动态网络模拟的分级突触传递模型。

A model of graded synaptic transmission for use in dynamic network simulations.

作者信息

De Schutter E, Angstadt J D, Calabrese R L

机构信息

Department of Biology, Emory University, Atlanta, Georgia 30322.

出版信息

J Neurophysiol. 1993 Apr;69(4):1225-35. doi: 10.1152/jn.1993.69.4.1225.

Abstract
  1. The heartbeat central pattern-generating network of the medicinal leech contains elemental neural oscillators, comprising reciprocally inhibitory pairs of segmental heart interneurons, that use graded as well as spike-mediated synaptic transmission. We are in the process of developing a general computer model of this pattern generator. Our modeling goal is to explore the interaction of membrane currents and synaptic transmission that promote oscillation in heart interneurons. As a first step toward this goal, we have developed a computer model of graded synaptic transmission between reciprocally inhibitory heart interneurons. Previously gathered voltage-clamp data of presynaptic Ca2+ currents and simultaneous postsynaptic currents and potentials (5 mM external [Ca2+]) were used as the bases of the model. 2. We assumed that presynaptic Ca2+ current was composed of distinct fast (ICaF) and slow (Icas) components because there are two distinct time courses of inactivation for this current. We fitted standard Hodgkin-Huxley equations (Eq. 1 and 2, APPENDIX) to these components using first-order activation and inactivation kinetics. 3. Graded synaptic transfer in the model is based on calculation of a dimensionless variable [P]. A portion of both IcaF and ICaS determined by a factor A contributes to [P], and a removal factor B decreases [P] (Eq. 4, APPENDIX). [P] can be roughly equated to the [Ca2+] in an unspecified volume that is effective in causing transmitter release. Transmitter release, and thus postsynaptic conductance, is related to [P]3 (Eq. 3, APPENDIX). 4. We adapted our model to voltage-clamp data gathered at physiological external [Ca2+] (2.0 mM) and tested it for shorter presynaptic voltage steps. Presynaptic Ca2+ currents and synaptic transfer were well simulated under all conditions. 5. The graded synaptic transfer model could be used in a network simulation to reproduce the oscillatory activity of a reciprocally inhibitory pair of heart interneurons. Because synaptic transmission in the model is an explicit function of presynaptic Ca2+ current, the model should prove useful to explore the interaction between membrane currents and synaptic transmission that promote and modulate oscillation in reciprocally inhibitory heart interneurons.
摘要
  1. 药用蚂蟥的心跳中央模式生成网络包含基本神经振荡器,由节段性心脏中间神经元的相互抑制对组成,这些神经元使用分级以及峰介导的突触传递。我们正在开发这个模式发生器的通用计算机模型。我们的建模目标是探索促进心脏中间神经元振荡的膜电流和突触传递之间的相互作用。作为实现这一目标的第一步,我们开发了一个相互抑制的心脏中间神经元之间分级突触传递的计算机模型。先前收集的突触前Ca2+电流以及同时记录的突触后电流和电位(细胞外[Ca2+]为5 mM)的电压钳数据被用作该模型的基础。2. 我们假设突触前Ca2+电流由不同的快速(ICaF)和慢速(ICas)成分组成,因为该电流存在两种不同的失活时间进程。我们使用一阶激活和失活动力学将标准霍奇金-赫胥黎方程(附录中的式1和式2)拟合到这些成分上。3. 模型中的分级突触传递基于一个无量纲变量[P]的计算。由因子A确定的ICaF和ICaS的一部分对[P]有贡献,而去除因子B会使[P]降低(附录中的式4)。[P]大致可等同于在一个未指定体积中有效引起递质释放的[Ca2+]。递质释放以及突触后电导与[P]3相关(附录中的式3)。4. 我们使我们的模型适应在生理细胞外[Ca2+](2.0 mM)下收集的电压钳数据,并对较短的突触前电压阶跃进行了测试。在所有条件下,突触前Ca2+电流和突触传递都得到了很好的模拟。5. 分级突触传递模型可用于网络模拟,以重现一对相互抑制的心脏中间神经元的振荡活动。由于模型中的突触传递是突触前Ca2+电流的显式函数,该模型应有助于探索促进和调节相互抑制的心脏中间神经元振荡的膜电流和突触传递之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验