Suppr超能文献

细胞水平的正反馈促进了电路水平的稳健性和调节。

A positive feedback at the cellular level promotes robustness and modulation at the circuit level.

作者信息

Dethier Julie, Drion Guillaume, Franci Alessio, Sepulchre Rodolphe

机构信息

Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey;

Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Laboratory of Pharmacology and GIGA Neurosciences, University of Liège, Liège, Belgium; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts; and.

出版信息

J Neurophysiol. 2015 Oct;114(4):2472-84. doi: 10.1152/jn.00471.2015. Epub 2015 Aug 26.

Abstract

This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation.

摘要

本文强调了细胞水平上的正反馈门控机制在回路水平节律活动的稳健性和调制特性中所起的作用。研究结果是在半中心振荡器的背景下呈现的,半中心振荡器是由两个相互连接的抑制性神经元群体组成的简单节律回路。具体而言,我们关注依赖于一种特殊兴奋性特性的节律,即抑制后反弹,这是一种内在的细胞特性,当从超极化状态释放时会引发瞬时膜去极化。两种不同的离子电流可引发这种瞬时去极化:一种超极化激活的阳离子电流和一种低阈值T型钙电流。缓慢激活的存在是T型钙电流所特有的,并在细胞水平提供了阳离子电流中不存在的缓慢正反馈。我们表明,这种缓慢正反馈是赋予网络节律生理调制和稳健性特性所必需的。因此,本研究确定了在模拟网络稳健性和调制时在网络水平需要保留的一种基本细胞特性。

相似文献

3
Cellular switches orchestrate rhythmic circuits.细胞开关协调节律性回路。
Biol Cybern. 2019 Apr;113(1-2):71-82. doi: 10.1007/s00422-018-0778-6. Epub 2018 Sep 3.
6
Robust and tunable bursting requires slow positive feedback.稳健且可调节的爆发需要缓慢的正反馈。
J Neurophysiol. 2018 Mar 1;119(3):1222-1234. doi: 10.1152/jn.00804.2017. Epub 2017 Dec 13.
10
Clustering through postinhibitory rebound in synaptically coupled neurons.通过突触耦合神经元的抑制后反弹进行聚类
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011908. doi: 10.1103/PhysRevE.70.011908. Epub 2004 Jul 15.

引用本文的文献

2
Neuronal network complexity can strengthens activity robustness.神经网络复杂性可增强活动稳健性。
Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2309988120. doi: 10.1073/pnas.2309988120. Epub 2023 Jul 24.
5
Circuit Robustness to Temperature Perturbation Is Altered by Neuromodulators.神经调质可改变电路对温度扰动的鲁棒性。
Neuron. 2018 Nov 7;100(3):609-623.e3. doi: 10.1016/j.neuron.2018.08.035. Epub 2018 Sep 20.
7
Robust and tunable bursting requires slow positive feedback.稳健且可调节的爆发需要缓慢的正反馈。
J Neurophysiol. 2018 Mar 1;119(3):1222-1234. doi: 10.1152/jn.00804.2017. Epub 2017 Dec 13.
8
Rebound from Inhibition: Self-Correction against Neurodegeneration?抑制反弹:针对神经退行性变的自我纠正?
J Clin Cell Immunol. 2017 Apr;8(2). doi: 10.4172/2155-9899.1000492. Epub 2017 Mar 13.
9
A Consistent Definition of Phase Resetting Using Hilbert Transform.使用希尔伯特变换对相位重置的一致定义。
Int Sch Res Notices. 2017 May 3;2017:5865101. doi: 10.1155/2017/5865101. eCollection 2017.

本文引用的文献

1
Dynamic Input Conductances Shape Neuronal Spiking.动态输入电导塑造神经元发放。
eNeuro. 2015 Mar 25;2(1). doi: 10.1523/ENEURO.0031-14.2015. eCollection 2015 Jan-Feb.
2
Neuromodulation of neurons and synapses.神经元和突触的神经调节
Curr Opin Neurobiol. 2014 Dec;29:48-56. doi: 10.1016/j.conb.2014.05.003. Epub 2014 Jun 5.
3
Convergent rhythm generation from divergent cellular mechanisms.从不同的细胞机制中产生会聚节律。
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.
4
A balance equation determines a switch in neuronal excitability.一个平衡方程决定了神经元兴奋性的转换。
PLoS Comput Biol. 2013;9(5):e1003040. doi: 10.1371/journal.pcbi.1003040. Epub 2013 May 23.
5
Phase response properties of half-center oscillators.半中枢振荡器的相位响应特性。
J Comput Neurosci. 2013 Aug;35(1):55-74. doi: 10.1007/s10827-013-0440-1. Epub 2013 Feb 28.
6
Twenty-five lessons from computational neuromodulation.计算神经调节的 25 课。
Neuron. 2012 Oct 4;76(1):240-56. doi: 10.1016/j.neuron.2012.09.027.
8
A novel phase portrait for neuronal excitability.一种新的神经元兴奋性相图。
PLoS One. 2012;7(8):e41806. doi: 10.1371/journal.pone.0041806. Epub 2012 Aug 8.
10
Neuromodulation and flexibility in Central Pattern Generator networks.中枢模式发生器网络中的神经调节和灵活性。
Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验