Pau R N, Eldridge M E, Lowe D J, Mitchenall L A, Eady R R
AFRC Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K.
Biochem J. 1993 Jul 1;293 ( Pt 1)(Pt 1):101-7. doi: 10.1042/bj2930101.
Nitrogenase-3 of Azotobacter vinelandii is synthesized under conditions of molybdenum and vanadium deficiency. The minimal metal requirement for its synthesis, and its metal content, indicated that the only transition metal in nitrogenase-3 was iron [Chisnell, Premakumar and Bishop (1988) J. Bacteriol. 170, 27-33; Pau, Mitchenall and Robson (1989) J. Bacteriol. 171, 124-129]. A new species of nitrogenase-3 has been purified from a strain of A. vinelandii (RP306) lacking structural genes for the Mo- and V-nitrogenases and containing a mutation which enables nitrogenase-3 to be synthesized in the presence of molybdenum. SDS/PAGE showed that component 1 contained a 15 kDa polypeptide which N-terminal amino acid sequence determination showed to be encoded by anfG. This confirms that nitrogenase-3, like V-nitrogenase, comprises three subunits. Preparations of the nitrogenase-3 from strain RP306 contained 24 Fe atoms and 1 Mo atom per molecule. Characterization of the cofactor centre of the enzyme by e.p.r. spectroscopy and an enzymic cofactor assay, together with stimulation of the growth of strain RP306 by Mo, showed that nitrogenase-3 can incorporate the Mo-nitrogenase cofactor (FeMoco) to form a functional enzyme. The specific activities (nmol of product produced/min per mg of protein) determined from activity titration curves were: under N2, NH3 formation 110, with concomitant H2 evolution of 220; under argon, H2 evolution 350; under 10% acetylene (C2H2) in argon, ethylene (C2H4) 58, ethane (C2H6) 26, and concomitant H2 evolution 226. The rate of formation of C2H6 was non-linear, and the C2H6/C2H4 ratio strongly dependent on the ratio of nitrogenase components.
棕色固氮菌的固氮酶-3是在钼和钒缺乏的条件下合成的。其合成所需的最低金属量及其金属含量表明,固氮酶-3中唯一的过渡金属是铁[Chisnell、Premakumar和Bishop(1988年)《细菌学杂志》170, 27 - 33;Pau、Mitchenall和Robson(1989年)《细菌学杂志》171, 124 - 129]。从一株棕色固氮菌(RP306)中纯化出了一种新的固氮酶-3,该菌株缺乏钼和钒固氮酶的结构基因,并且含有一个使固氮酶-3能够在钼存在的情况下合成的突变。SDS/PAGE显示,组分1含有一条15 kDa的多肽,其N端氨基酸序列测定表明由anfG编码。这证实了固氮酶-3与钒固氮酶一样,由三个亚基组成。来自菌株RP306的固氮酶-3制剂每分子含有24个铁原子和1个钼原子。通过电子顺磁共振光谱和酶辅因子测定对该酶的辅因子中心进行表征,以及钼对菌株RP306生长的刺激作用,表明固氮酶-3可以结合钼固氮酶辅因子(FeMoco)形成一种功能性酶。根据活性滴定曲线测定的比活性(每毫克蛋白质每分钟产生的产物纳摩尔数)为:在氮气下,氨生成110,同时氢气释放220;在氩气下,氢气释放350;在氩气中10%乙炔(C2H2)存在下,乙烯(C2H4)58,乙烷(C2H6)26,同时氢气释放226。乙烷(C2H6)的形成速率是非线性的,并且C2H6/C2H4比率强烈依赖于固氮酶组分的比例。