Suppr超能文献

铁固氮酶催化氮还原的机制涉及氢的还原消除。

Mechanism of N Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H.

作者信息

Harris Derek F, Lukoyanov Dmitriy A, Shaw Sudipta, Compton Phil, Tokmina-Lukaszewska Monika, Bothner Brian, Kelleher Neil, Dean Dennis R, Hoffman Brian M, Seefeldt Lance C

机构信息

Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States.

Departments of Chemistry and Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States.

出版信息

Biochemistry. 2018 Feb 6;57(5):701-710. doi: 10.1021/acs.biochem.7b01142. Epub 2018 Jan 17.

Abstract

Of the three forms of nitrogenase (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase), Fe-nitrogenase has the poorest ratio of N reduction relative to H evolution. Recent work on the Mo-nitrogenase has revealed that reductive elimination of two bridging Fe-H-Fe hydrides on the active site FeMo-cofactor to yield H is a key feature in the N reduction mechanism. The N reduction mechanism for the Fe-nitrogenase active site FeFe-cofactor was unknown. Here, we have purified both component proteins of the Fe-nitrogenase system, the electron-delivery Fe protein (AnfH) plus the catalytic FeFe protein (AnfDGK), and established its mechanism of N reduction. Inductively coupled plasma optical emission spectroscopy and mass spectrometry show that the FeFe protein component does not contain significant amounts of Mo or V, thus ruling out a requirement of these metals for N reduction. The fully functioning Fe-nitrogenase system was found to have specific activities for N reduction (1 atm) of 181 ± 5 nmol NH min mg FeFe protein, for proton reduction (in the absence of N) of 1085 ± 41 nmol H min mg FeFe protein, and for acetylene reduction (0.3 atm) of 306 ± 3 nmol CH min mg FeFe protein. Under turnover conditions, N reduction is inhibited by H and the enzyme catalyzes the formation of HD when presented with N and D. These observations are explained by the accumulation of four reducing equivalents as two metal-bound hydrides and two protons at the FeFe-cofactor, with activation for N reduction occurring by reductive elimination of H.

摘要

在三种固氮酶形式(钼固氮酶、钒固氮酶和铁固氮酶)中,铁固氮酶相对于氢生成的氮还原比率最低。最近对钼固氮酶的研究表明,在活性位点铁钼辅因子上还原消除两个桥连的铁 - 氢 - 铁氢化物以产生氢气是氮还原机制的一个关键特征。铁固氮酶活性位点铁铁辅因子的氮还原机制尚不清楚。在这里,我们纯化了铁固氮酶系统的两种组成蛋白,电子传递铁蛋白(AnfH)和催化铁铁蛋白(AnfDGK),并确定了其氮还原机制。电感耦合等离子体发射光谱和质谱表明,铁铁蛋白组分不含大量的钼或钒,因此排除了这些金属对氮还原的需求。发现功能完全正常的铁固氮酶系统对氮还原(1个大气压)的比活性为181±5 nmol NH₃ min⁻¹ mg⁻¹铁铁蛋白,对质子还原(无氮时)的比活性为1085±41 nmol H₂ min⁻¹ mg⁻¹铁铁蛋白,对乙炔还原(0.3个大气压)的比活性为306±3 nmol C₂H₄ min⁻¹ mg⁻¹铁铁蛋白。在周转条件下,氮还原受到氢气的抑制,并且当存在氮气和重氢时,该酶催化生成HD。这些观察结果可以通过在铁铁辅因子上积累四个还原当量,即两个金属结合的氢化物和两个质子来解释,氮还原的激活是通过氢的还原消除发生的。

相似文献

1
Mechanism of N Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H.
Biochemistry. 2018 Feb 6;57(5):701-710. doi: 10.1021/acs.biochem.7b01142. Epub 2018 Jan 17.
2
Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N Reduction.
Biochemistry. 2019 Jul 30;58(30):3293-3301. doi: 10.1021/acs.biochem.9b00468. Epub 2019 Jul 19.
4
Kinetic Understanding of N Reduction versus H Evolution at the E(4H) Janus State in the Three Nitrogenases.
Biochemistry. 2018 Oct 2;57(39):5706-5714. doi: 10.1021/acs.biochem.8b00784. Epub 2018 Sep 19.
5
On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.
6
Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii.
mBio. 2021 Aug 31;12(4):e0156821. doi: 10.1128/mBio.01568-21. Epub 2021 Jul 20.
8
Mechanism of Nitrogenase H Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects.
J Am Chem Soc. 2017 Sep 27;139(38):13518-13524. doi: 10.1021/jacs.7b07311. Epub 2017 Sep 15.
9
Time-Resolved EPR Study of H Reductive Elimination from the Photoexcited Nitrogenase Janus E(4H) Intermediate.
J Phys Chem B. 2019 Oct 17;123(41):8823-8828. doi: 10.1021/acs.jpcb.9b07776. Epub 2019 Oct 8.
10
CO as a substrate and inhibitor of H reduction for the Mo-, V-, and Fe-nitrogenase isozymes.
J Inorg Biochem. 2020 Dec;213:111278. doi: 10.1016/j.jinorgbio.2020.111278. Epub 2020 Oct 6.

引用本文的文献

1
Molecular sorting of nitrogenase catalytic cofactors.
J Biol Chem. 2025 Mar;301(3):108291. doi: 10.1016/j.jbc.2025.108291. Epub 2025 Feb 10.
2
Molecular sorting of nitrogenase catalytic cofactors.
bioRxiv. 2025 Jan 21:2025.01.21.634024. doi: 10.1101/2025.01.21.634024.
3
Conformational protection of molybdenum nitrogenase by Shethna protein II.
Nature. 2025 Jan;637(8047):998-1004. doi: 10.1038/s41586-024-08355-3. Epub 2025 Jan 8.
6
On the Shoulders of Giants-Reaching for Nitrogenase.
Molecules. 2023 Dec 5;28(24):7959. doi: 10.3390/molecules28247959.
7
The Mononuclear Metal-Binding Site of Mo-Nitrogenase Is Not Required for Activity.
JACS Au. 2023 Nov 6;3(11):2993-2999. doi: 10.1021/jacsau.3c00567. eCollection 2023 Nov 27.
9
Nitrogen Fixation and Hydrogen Evolution by Sterically Encumbered Mo-Nitrogenase.
JACS Au. 2023 May 9;3(5):1521-1533. doi: 10.1021/jacsau.3c00165. eCollection 2023 May 22.
10
Near ambient N fixation on solid electrodes versus enzymes and homogeneous catalysts.
Nat Rev Chem. 2023 Mar;7(3):184-201. doi: 10.1038/s41570-023-00462-5. Epub 2023 Feb 1.

本文引用的文献

1
The structure of vanadium nitrogenase reveals an unusual bridging ligand.
Nat Chem Biol. 2017 Sep;13(9):956-960. doi: 10.1038/nchembio.2428. Epub 2017 Jul 10.
3
Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
Biochemistry. 2016 Jul 5;55(26):3625-35. doi: 10.1021/acs.biochem.6b00421. Epub 2016 Jun 22.
4
Reversible Photoinduced Reductive Elimination of H2 from the Nitrogenase Dihydride State, the E(4)(4H) Janus Intermediate.
J Am Chem Soc. 2016 Feb 3;138(4):1320-7. doi: 10.1021/jacs.5b11650. Epub 2016 Jan 20.
5
Binding of dinitrogen to an iron-sulfur-carbon site.
Nature. 2015 Oct 1;526(7571):96-9. doi: 10.1038/nature15246. Epub 2015 Sep 23.
6
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
8
PeptideShaker enables reanalysis of MS-derived proteomics data sets.
Nat Biotechnol. 2015 Jan;33(1):22-4. doi: 10.1038/nbt.3109.
9
Mechanism of nitrogen fixation by nitrogenase: the next stage.
Chem Rev. 2014 Apr 23;114(8):4041-62. doi: 10.1021/cr400641x. Epub 2014 Jan 27.
10
Catalytic conversion of nitrogen to ammonia by an iron model complex.
Nature. 2013 Sep 5;501(7465):84-7. doi: 10.1038/nature12435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验