Suppr超能文献

运动控制中的冗余问题:自适应模型理论方法

The problem of redundancy in movement control: the adaptive model theory approach.

作者信息

Neilson P D

机构信息

Department of Systems and Control, School of Electrical Engineering, University of New South Wales, Australia.

出版信息

Psychol Res. 1993;55(2):99-106. doi: 10.1007/BF00419640.

Abstract

The problem of redundancy in movement control is encountered when one attempts to answer the question: How does the central nervous system (CNS) determine the pattern of neural activity required in some 5,000,000 descending motor fibres to control only 100-150 biomechanical degrees of freedom of movement? Mathematically this is equivalent to solving a set of simultaneous equations with many more unknowns than equations. This system of equations is redundant because it has an infinite number of possible solutions. The problem is solved by the neuronal circuitry hypothesized in Adaptive Model Theory (AMT). According to AMT, the CNS includes neuronal circuitry able to compute and maintain adaptively the accuracy of internal models of the reciprocal multivariable relationships between outgoing motor commands and their resulting sensory consequences. To identify these input-output relationships by means of regression analysis, correlations between the input signals have to be taken into account. For example, if the inputs are perfectly correlated, the model reduces to a virtual one-input system. In general, the number of inputs modelled equals the number of degrees of freedom encoded by the signals; that is, the number of independently varying (orthogonal) signals. The adaptive modelling circuitry proposed in AMT automatically tunes itself to extract independently varying sensory and motor signals before computing the dynamic relationships between them. Inverse models are employed during response execution to translate movements pre-planned as desired trajectories of these high-level sensory-feature signals into appropriately co-ordinated motor commands to send to the muscles. Since movement is pre-planned in terms of a number of orthogonalized sensory-feature signals equal to the number of degrees of freedom in the desired response, the problem of redundancy is solved and the correlation or co-ordination between motor-command signals is automatically introduced by the adaptive models.

摘要

当人们试图回答以下问题时,就会遇到运动控制中的冗余问题:中枢神经系统(CNS)如何确定约500万条下行运动纤维中所需的神经活动模式,以仅控制100 - 150个生物力学运动自由度?从数学上讲,这等同于求解一组未知数比方程多得多的联立方程。这个方程组是冗余的,因为它有无数个可能的解。自适应模型理论(AMT)假设的神经元回路解决了这个问题。根据AMT,中枢神经系统包括能够自适应地计算和维持传出运动指令与其产生的感觉后果之间相互多变量关系的内部模型准确性的神经元回路。为了通过回归分析识别这些输入 - 输出关系,必须考虑输入信号之间的相关性。例如,如果输入完全相关,模型就简化为一个虚拟的单输入系统。一般来说,建模的输入数量等于信号编码的自由度数量;也就是说,独立变化(正交)信号的数量。AMT中提出的自适应建模电路在计算它们之间的动态关系之前,会自动调整自身以提取独立变化的感觉和运动信号。在响应执行期间使用逆模型,将预先规划为这些高级感觉特征信号期望轨迹的运动转换为适当协调的运动指令,发送到肌肉。由于运动是根据与期望响应中的自由度数量相等的多个正交化感觉特征信号预先规划的,冗余问题得到解决,并且自适应模型会自动引入运动指令信号之间的相关性或协调性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验