Suppr超能文献

金鱼逃逸的网状脊髓控制中的方向改变概念。

The direction change concept for reticulospinal control of goldfish escape.

作者信息

Foreman M B, Eaton R C

机构信息

Center for Neuroscience, University of Colorado at Boulder 80309-0334.

出版信息

J Neurosci. 1993 Oct;13(10):4101-13. doi: 10.1523/JNEUROSCI.13-10-04101.1993.

Abstract

This is an analysis of whether biomechanical or kinematic variables are controlled by descending reticulospinal commands to the spinal cord during escape responses (C-starts) in the goldfish. We studied how the animal contracted its trunk musculature to orient an escape trajectory. We used trunk EMG recordings as a measure of the reticulospinal output to the musculature and we simultaneously gathered high-speed cinematic records of the resulting movements. We found that the escape trajectory is controlled by (1) the relative size of the agonist versus the antagonist muscle contractions on two sides of the body and (2) the timing between these contractions. We found no separate signal for forward propulsion (or force) apart from the initial stage 1 bending of the body. Rather, the neural specification of force is embedded in the commands to bend the body. Thus, our findings demonstrate the importance of the angular kinematic components, or direction changes, caused by the descending reticulospinal command. This new direction change concept is important for two reasons. First, it unifies the diversity of C-start movement patterns into a single and rather simple quantitative model. Second, the model is analogous to the systematic EMG and kinematic changes observed by others to underlie single joint movements of limbs in other vertebrates such as primates. As in these cases, the fish capitalizes on the mechanical properties of the muscle by setting the extent and timing of agonist and antagonist contractions. This, plus the fact that sensory feedback is likely to be minimal, may enable the animal to reduce the number of computational steps in its motor commands used to produce the escape response. Because horizontal body movements in fish are a fundamental vertebrate movement pattern produced by a highly conserved brainstem movement system, our findings may have general implications for understanding the neural basis of rapid movements of diverse body parts.

摘要

这是一项关于在金鱼的逃避反应(C 型启动)过程中,生物力学或运动学变量是否受下行网状脊髓指令控制至脊髓的分析。我们研究了动物如何收缩其躯干肌肉组织以确定逃避轨迹。我们使用躯干肌电图记录作为网状脊髓向肌肉组织输出的一种测量方法,同时收集了由此产生的运动的高速电影记录。我们发现逃避轨迹受以下因素控制:(1)身体两侧 agonist 与 antagonist 肌肉收缩的相对大小;(2)这些收缩之间的时间安排。除了身体最初的第 1 阶段弯曲外,我们没有发现用于向前推进(或力)的单独信号。相反,力的神经指令嵌入在使身体弯曲的指令中。因此,我们的研究结果证明了下行网状脊髓指令引起的角运动学成分或方向变化的重要性。这个新的方向变化概念之所以重要有两个原因。首先,它将 C 型启动运动模式的多样性统一到一个单一且相当简单的定量模型中。其次,该模型类似于其他人观察到的作为其他脊椎动物(如灵长类动物)肢体单关节运动基础的系统性肌电图和运动学变化。就像在这些情况中一样,鱼通过设定 agonist 和 antagonist 收缩的程度和时间来利用肌肉的力学特性。这一点,再加上感觉反馈可能最小化这一事实,可能使动物能够减少其用于产生逃避反应的运动指令中的计算步骤数量。由于鱼类的水平身体运动是由高度保守的脑干运动系统产生的一种基本脊椎动物运动模式,我们的研究结果可能对理解不同身体部位快速运动的神经基础具有普遍意义。

相似文献

9
Some voluntary C-bends may be Mauthner neuron initiated.一些自发性C形弯曲可能由莫特纳尔神经元引发。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Oct;193(10):1055-64. doi: 10.1007/s00359-007-0258-2. Epub 2007 Aug 3.

引用本文的文献

1
Aligning brain and behavior.使大脑与行为相匹配。
Curr Opin Behav Sci. 2025 Apr;62. doi: 10.1016/j.cobeha.2025.101487. Epub 2025 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验