Suppr超能文献

幼虫斑马鱼传入机械感觉的功能和超微结构分析。

Functional and ultrastructural analysis of reafferent mechanosensation in larval zebrafish.

机构信息

Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.

Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Curr Biol. 2022 Jan 10;32(1):176-189.e5. doi: 10.1016/j.cub.2021.11.007. Epub 2021 Nov 24.

Abstract

All animals need to differentiate between exafferent stimuli, which are caused by the environment, and reafferent stimuli, which are caused by their own movement. In the case of mechanosensation in aquatic animals, the exafferent inputs are water vibrations in the animal's proximity, which need to be distinguishable from the reafferent inputs arising from fluid drag due to locomotion. Both of these inputs are detected by the lateral line, a collection of mechanosensory organs distributed along the surface of the body. In this study, we characterize in detail how hair cells-the receptor cells of the lateral line-in zebrafish larvae discriminate between such reafferent and exafferent signals. Using dye labeling of the lateral line nerve, we visualize two parallel descending inputs that can influence lateral line sensitivity. We combine functional imaging with ultra-structural EM circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies (copies of the motor command that cancel out self-generated reafferent stimulation during locomotion) and that dopaminergic signals from the hypothalamus may have a role in threshold modulation, both in response to locomotion and salient stimuli. We further gain direct mechanistic insight into the core components of this circuit by loss-of-function perturbations using targeted ablations and gene knockouts. We propose that this simple circuit is the core implementation of mechanosensory reafferent suppression in these young animals and that it might form the first instantiation of state-dependent modulation found at later stages in development.

摘要

所有动物都需要区分外感受刺激和内感受刺激,前者是由环境引起的,后者是由自身运动引起的。在水生动物的机械感觉中,外感受输入是动物附近的水振动,需要将其与由于运动引起的流体阻力产生的内感受输入区分开来。这两种输入都由侧线检测,侧线是分布在身体表面的一组机械感受器器官。在这项研究中,我们详细描述了斑马鱼幼虫中的毛细胞(侧线的感受器细胞)如何区分这种内感受和外感受信号。我们使用侧线神经的染料标记,可视化了两个平行的下行输入,它们可以影响侧线的敏感性。我们将功能成像与超微结构 EM 电路重建相结合,表明来自后脑的胆碱能信号传递传出副本(运动指令的副本,可以在运动期间消除自身产生的内感受刺激),而来自下丘脑的多巴胺能信号可能在运动和显著刺激时发挥阈值调制的作用。我们进一步通过使用靶向消融和基因敲除进行功能丧失扰动,直接获得了该电路核心组件的机械机制见解。我们提出,这个简单的电路是这些年幼动物机械感觉内感受抑制的核心实现,它可能构成发育后期发现的状态相关调制的第一个实例。

相似文献

6
Corollary discharge enables proprioception from lateral line sensory feedback.侧线感觉反馈的副放电使本体感受成为可能。
PLoS Biol. 2021 Oct 11;19(10):e3001420. doi: 10.1371/journal.pbio.3001420. eCollection 2021 Oct.
10
A neuronal blueprint for directional mechanosensation in larval zebrafish.幼虫斑马鱼中定向机械感觉的神经元蓝图。
Curr Biol. 2021 Apr 12;31(7):1463-1475.e6. doi: 10.1016/j.cub.2021.01.045. Epub 2021 Feb 4.

引用本文的文献

3
Representation of bulk water flow in the goldfish (Carassius auratus) midbrain.金鱼(Carassius auratus)中脑内大量水流的表现。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025 Jan;211(1):69-85. doi: 10.1007/s00359-024-01715-4. Epub 2024 Sep 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验