Huletsky A, Knox J R, Levesque R C
Département de Microbiologie, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada.
J Biol Chem. 1993 Feb 15;268(5):3690-7.
A growing number of extended spectrum SHV-type beta-lactamases capable of hydrolyzing third-generation cephalosporins such as cefotaxime and ceftazidime have been reported. These new enzymes differ by a few amino acids from SHV-1, an enzyme incapable of hydrolyzing these drugs. Two of these substitutions, Gly-238-->Ser and Glu-240-->Lys, are in a key beta-strand of the catalytic site of class A beta-lactamases. To understand the structural basis of these new activities, we first subcloned the DNA region coding for SHV-1 and SHV-2 and did site-directed mutagenesis to create two mutant SHV-1 proteins containing Ser and Glu or Gly and Lys and two mutant SHV-2 proteins containing Gly and Glu or Ser and Lys in positions 238 and 240, respectively. Phenotypic analysis (antibiograms and minimum inhibitory concentrations) and activity spectra of mutant enzymes showed that Ser-238 is critical for cefotaxime hydrolysis whereas both Ser-238 and Lys-240 are needed for strong ceftazidime hydrolysis. A three-dimensional model for SHV beta-lactamase complexes was constructed using the crystallographic structure of the homologous Bacillus licheniformis beta-lactamase, the complex of cefotaxime with the Streptomyces sp. R61 D-alanyl-D-alanine peptidase, and the complex of aztreonam with the Citrobacter freundii beta-lactamase. The modeling of SHV beta-lactamase complexes showed that factors which are most likely to correlate with binding and kinetic data are the size of the relatively buried amino acid at position 238 and the electrostatic charge of the exposed group at position 240.
据报道,能够水解第三代头孢菌素(如头孢噻肟和头孢他啶)的超广谱SHV型β-内酰胺酶数量不断增加。这些新酶与SHV-1(一种不能水解这些药物的酶)在几个氨基酸上存在差异。其中两个取代,即甘氨酸-238→丝氨酸和谷氨酸-240→赖氨酸,位于A类β-内酰胺酶催化位点的关键β链中。为了理解这些新活性的结构基础,我们首先亚克隆了编码SHV-1和SHV-2的DNA区域,并进行定点诱变,以创建两种突变型SHV-1蛋白,分别在238和240位含有丝氨酸和谷氨酸或甘氨酸和赖氨酸,以及两种突变型SHV-2蛋白,分别在238和240位含有甘氨酸和谷氨酸或丝氨酸和赖氨酸。突变酶的表型分析(抗菌谱和最低抑菌浓度)及活性谱表明,丝氨酸-238对头孢噻肟水解至关重要,而强烈的头孢他啶水解则需要丝氨酸-238和赖氨酸-240两者。利用同源地衣芽孢杆菌β-内酰胺酶的晶体结构、头孢噻肟与链霉菌属R61 D-丙氨酰-D-丙氨酸肽酶的复合物以及氨曲南与弗氏柠檬酸杆菌β-内酰胺酶的复合物,构建了SHVβ-内酰胺酶复合物的三维模型。SHVβ-内酰胺酶复合物的建模表明,最有可能与结合和动力学数据相关的因素是238位相对埋藏氨基酸的大小以及240位暴露基团的静电荷。