Suppr超能文献

基于骨架几何形状鉴定金属结合氨基酸作为金属蛋白酶工程的工具。

Identifying metal binding amino acids based on backbone geometries as a tool for metalloprotein engineering.

机构信息

Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA.

Department of Chemistry and Biochemistry, Messiah University, Mechanicsburg, Pennsylvania, USA.

出版信息

Protein Sci. 2021 Jun;30(6):1247-1257. doi: 10.1002/pro.4074. Epub 2021 Apr 20.

Abstract

Metal cofactors within proteins perform a versatile set of essential cellular functions. In order to take advantage of the diverse functionality of metalloproteins, researchers have been working to design or modify metal binding sites in proteins to rationally tune the function or activity of the metal cofactor. This study has performed an analysis on the backbone atom geometries of metal-binding amino acids among 10 different metal binding sites within the entire protein data bank. A set of 13 geometric parameters (features) was identified that is capable of predicting the presence of a metal cofactor in the protein structure with overall accuracies of up to 97% given only the relative positions of their backbone atoms. The decision tree machine-learning algorithm used can quickly analyze an entire protein structure for the presence of sets of primary metal coordination spheres upon mutagenesis, independent of their original amino acid identities. The methodology was designed for application in the field of metalloprotein engineering. A cluster analysis using the data set was also performed and demonstrated that the features chosen are useful for identifying clusters of structurally similar metal-binding sites.

摘要

金属辅因子在蛋白质中执行着多种多样的基本细胞功能。为了充分利用金属蛋白的多样化功能,研究人员一直在努力设计或修饰蛋白质中的金属结合位点,以合理调节金属辅因子的功能或活性。本研究对整个蛋白质数据库中 10 个不同金属结合位点中金属结合氨基酸的骨架原子几何形状进行了分析。确定了一组 13 个几何参数(特征),仅根据其骨架原子的相对位置,就能以高达 97%的整体准确度预测蛋白质结构中金属辅因子的存在。所使用的决策树机器学习算法可以快速分析整个蛋白质结构中存在的一组主要金属配位球,而无需考虑其原始氨基酸的身份。该方法旨在应用于金属蛋白工程领域。还对数据集进行了聚类分析,结果表明所选择的特征对于识别结构相似的金属结合位点簇非常有用。

相似文献

1
Identifying metal binding amino acids based on backbone geometries as a tool for metalloprotein engineering.
Protein Sci. 2021 Jun;30(6):1247-1257. doi: 10.1002/pro.4074. Epub 2021 Apr 20.
3
Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
Acc Chem Res. 2019 May 21;52(5):1160-1167. doi: 10.1021/acs.accounts.9b00032. Epub 2019 Apr 1.
4
Computational approaches for design and redesign of metal-binding sites on proteins.
Biosci Rep. 2017 Mar 27;37(2). doi: 10.1042/BSR20160179. Print 2017 Apr 28.
5
Metal-chelating non-canonical amino acids in metalloprotein engineering and design.
Curr Opin Struct Biol. 2018 Aug;51:170-176. doi: 10.1016/j.sbi.2018.06.001. Epub 2018 Jul 3.
6
Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
Methods Mol Biol. 2016;1414:173-85. doi: 10.1007/978-1-4939-3569-7_10.
7
The prediction and characterization of metal binding sites in proteins.
Protein Eng. 1993 Jan;6(1):29-35. doi: 10.1093/protein/6.1.29.
8
De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.
9
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
10
Metal-binding sites in proteins.
Curr Opin Biotechnol. 1991 Aug;2(4):582-91. doi: 10.1016/0958-1669(91)90084-i.

引用本文的文献

1
Hunting down zinc(II)-binding sites in proteins with distance matrices.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad653.
2
Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications.
Int J Mol Sci. 2022 Jul 12;23(14):7684. doi: 10.3390/ijms23147684.
3
A Comprehensive Review of Computation-Based Metal-Binding Prediction Approaches at the Residue Level.
Biomed Res Int. 2022 Mar 31;2022:8965712. doi: 10.1155/2022/8965712. eCollection 2022.
4
Machine Learning Approaches for Metalloproteins.
Molecules. 2022 Feb 14;27(4):1277. doi: 10.3390/molecules27041277.

本文引用的文献

1
A review of mathematical representations of biomolecular data.
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. doi: 10.1039/c9cp06554g.
2
Towards the online computer-aided design of catalytic pockets.
Nat Chem. 2019 Oct;11(10):872-879. doi: 10.1038/s41557-019-0319-5. Epub 2019 Sep 2.
3
Redesign of a Copper Storage Protein into an Artificial Hydrogenase.
ACS Catal. 2019 Jul 5;9(7):5847-5859. doi: 10.1021/acscatal.9b00360. Epub 2019 May 16.
4
Machine-learning-guided directed evolution for protein engineering.
Nat Methods. 2019 Aug;16(8):687-694. doi: 10.1038/s41592-019-0496-6. Epub 2019 Jul 15.
5
Engineering Metalloprotein Functions in Designed and Native Scaffolds.
Trends Biochem Sci. 2019 Dec;44(12):1022-1040. doi: 10.1016/j.tibs.2019.06.006. Epub 2019 Jul 13.
6
De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
Acc Chem Res. 2019 May 21;52(5):1148-1159. doi: 10.1021/acs.accounts.8b00674. Epub 2019 Apr 11.
7
Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
Acc Chem Res. 2019 May 21;52(5):1160-1167. doi: 10.1021/acs.accounts.9b00032. Epub 2019 Apr 1.
8
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
9
An efficient, step-economical strategy for the design of functional metalloproteins.
Nat Chem. 2019 May;11(5):434-441. doi: 10.1038/s41557-019-0218-9. Epub 2019 Feb 18.
10
Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
Acc Chem Res. 2019 Feb 19;52(2):326-335. doi: 10.1021/acs.accounts.8b00586. Epub 2019 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验