Suppr超能文献

Changes in pial arteriolar diameter and CSF adenosine concentrations during hypoxia.

作者信息

Meno J R, Ngai A C, Winn H R

机构信息

Department of Neurological Surgery, University of Washington School of Medicine, Seattle.

出版信息

J Cereb Blood Flow Metab. 1993 Mar;13(2):214-20. doi: 10.1038/jcbfm.1993.26.

Abstract

We measured the changes in pial arteriolar diameter and CSF concentrations of adenosine, inosine, and hypoxanthine during hypoxia in the absence and presence of topically applied dipyridamole (10(-6) M) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; 10(-5) M). Closed cranial windows were implanted in halothane-anesthetized adult male Sprague-Dawley rats for the observation of the pial circulation and collection of CSF. The mean resting arteriolar diameter in mock CSF was 31.2 +/- 5.9 microns. Topically applied dipyridamole and EHNA, in combination, caused a slight but significant (p < 0.05) increase in resting arteriolar diameter (33.8 +/- 4.3 microns). With mock CSF, moderate hypoxia caused a 22.1 +/- 9.7% increase in pial vessel diameter. Topically applied dipyridamole and EHNA significantly (p < 0.01) potentiated pial arteriolar vasodilation in response to hypoxia. Moreover, the potentiating effects of dipyridamole and EHNA during hypoxia were completely abolished by theophylline (0.20 mumol/g, i.p.; p < 0.05), an adenosine receptor antagonist. Resting concentrations of adenosine, inosine, and hypoxanthine in the subwindow CSF were 0.18 +/- 0.09, 0.35 +/- 0.21, and 0.62 +/- 0.12 microM, respectively. In the absence of dipyridamole and EHNA, these levels were not affected by sustained moderate hypoxia (PaO2 = 36 +/- 6 mm Hg). However, in the presence of dipyridamole and EHNA, the concentration of adenosine in the CSF during hypoxia was significantly (p < 0.05) increased. Our data indicate that dipyridamole and EHNA potentiate hypoxic vasodilation of pial arterioles while simultaneously increasing extracellular adenosine levels, thus supporting the hypothesis that adenosine is involved in the regulation of cerebral blood flow.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验