Suppr超能文献

Comparative rheology of human and trout red blood cells.

作者信息

Nash G B, Egginton S

机构信息

Department of Haematology, Medical School, University of Birmingham.

出版信息

J Exp Biol. 1993 Jan;174:109-22. doi: 10.1242/jeb.174.1.109.

Abstract

We have studied the comparative rheology of individual red blood cells from humans and rainbow trout (Oncorhynchus mykiss) at their natural body temperatures. Trout red blood cells were large ellipsoids (about 16 microns x 11.5 microns x 2.5 microns) with a mean volume of 250 fl, a surface area of approximately 350 microns 2 and an elongated nucleus of about 9 microns x 5 microns. Although much larger than human red cells (diameter 8 microns, V = 92 fl, A = 136 microns 2), both theoretical calculation and experimental aspiration into micropipettes indicated that the limiting size of a cylindrical vessel that both types of cell could enter was approximately 3 microns. Nevertheless, individual trout red cells had much longer transit times through 5 microns filter pores and were much slower to enter 3-4 microns diameter micropipettes. Interestingly, the relative deformability of the trout cells depended on the pore size and applied pressure, with entry times for trout and human cells converging as pipette diameter increased. The relatively poor overall cellular deformability of the trout cells reflected their membrane rigidity (shear elastic modulus 4-5 times higher than that of human membrane), as well as their large size and the presence of a prominent nucleus. Capillary diameters in trout muscle are similar to those in the human microcirculation (about 3 microns), while systemic driving pressures are much lower. Therefore, either red cell deformability is a less critical circulatory parameter than has previously been thought, or the apparently disadvantageous blood rheology of trout is adequate because of the lower demand for tissue perfusion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验