Suppr超能文献

水合作用和热稳定性对蛋白质展开的影响。

Hydration and heat stability effects on protein unfolding.

作者信息

Oobatake M, Ooi T

机构信息

Protein Engineering Research Institute, Osaka, Japan.

出版信息

Prog Biophys Mol Biol. 1993;59(3):237-84. doi: 10.1016/0079-6107(93)90002-2.

Abstract

In summary, the thermal denaturation of proteins has been elucidated in terms of the chain free energy and the hydration free energy as follows. (1) Method to calculate the unfolding free energy. The free energy of unfolding consists of two contributions: the hydration around the molecule, and the intramolecular interactions. A method to calculate the free energy of hydration from the accessible surface area (ASA) of the constituent atomic groups in a protein has been developed. This assumes a proportionality between the free energy and the ASA, where the proportional constants were determined by least-squares fitting to the experimentally derived thermodynamic data on small molecules. Similarly, the free energy of unfolding for the chain in vacuo can be also calculated from the ASA, using the unfolding thermodynamics derived from the experimental data of the ten proteins. (2) Thermodynamics of protein unfolding predicted from the three-dimensional structures and from the amino acid content in proteins. First, our method is applied to predict the thermodynamics of protein unfolding from the X-ray structure. The predicted values of four test proteins agree well with the experimentally derived values. It also accounts for the temperature dependence of the free energy and of the enthalpy upon unfolding for 14 proteins. Second, this method is applied to the helix-coil transition of short peptides of poly(L-Ala)20 and Ac-(AAAAK)3A-NH2. The calculated enthalpy change is close to the experimental values for poly-L-Lys and poly-L-Glu. Since delta Hcu at 25 degrees C significantly contributes to delta Gu, the helix formation is enthalpy-driven through interactions in the chain. Third, the method is applied to predict the unfolding thermodynamics of a globular protein from its amino acid content. It also accounts for the temperature dependence of the free energy of unfolding for the 14 proteins. The agreement between the experimental and the calculated values by this method for the 14 proteins is not so different from those obtained with the three-dimensional structures. Fourth, the values of delta Cpu for 14 proteins may be closely approximated to the predicted values of delta Cp,hu. The delta Cp,hu value in a protein consists of the major contribution from the hydrophobic and the aromatic residues, and the minor one from the hydrophilic residues. (3) Dominant free energies in protein folding.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

综上所述,蛋白质的热变性可根据链自由能和水合自由能阐释如下。(1)计算解折叠自由能的方法。解折叠自由能由两部分组成:分子周围的水合作用以及分子内相互作用。已开发出一种根据蛋白质中组成原子基团的可及表面积(ASA)来计算水合自由能的方法。这假定自由能与ASA成正比,其中比例常数通过对小分子的实验得出的热力学数据进行最小二乘法拟合来确定。类似地,真空中链的解折叠自由能也可根据ASA计算,使用从十种蛋白质的实验数据推导得出的解折叠热力学。(2)根据蛋白质的三维结构和氨基酸含量预测蛋白质解折叠的热力学。首先,我们的方法用于根据X射线结构预测蛋白质解折叠的热力学。四种测试蛋白质的预测值与实验得出的值吻合良好。它还解释了14种蛋白质解折叠时自由能和焓的温度依赖性。其次,该方法应用于聚(L-丙氨酸)20和Ac-(AAAAK)3A-NH2短肽的螺旋-无规卷曲转变。计算出的焓变与聚-L-赖氨酸和聚-L-谷氨酸的实验值相近。由于25℃时的ΔHcu对ΔGu有显著贡献,螺旋形成是通过链内相互作用由焓驱动的。第三,该方法用于根据氨基酸含量预测球状蛋白质的解折叠热力学。它还解释了14种蛋白质解折叠自由能的温度依赖性。该方法对14种蛋白质的实验值和计算值之间的一致性与从三维结构获得的一致性没有太大差异。第四,14种蛋白质的ΔCpu值可能与预测的ΔCp,hu值非常接近。蛋白质中的ΔCp,hu值主要由疏水和芳香族残基贡献,次要由亲水残基贡献。(3)蛋白质折叠中的主导自由能。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验