Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093.
Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11548-11553. doi: 10.1073/pnas.1705524114. Epub 2017 Oct 10.
Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show () that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, () how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, () how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and () how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses.
维持蛋白质的正确折叠对于细菌在显著不同的生长温度下的生存至关重要。理解热适应的分子基础已经在两个主要方向上取得了进展,即蛋白质热稳定性的序列和结构基础,以及伴侣蛋白辅助的蛋白质质量控制的机制原则。然而,我们并不完全了解整个蛋白质组在压力下的结构完整性如何维持,以及它如何影响细胞适应性。为了解决这一挑战,我们为 重建了一个基于全基因组的蛋白质折叠网络,并提出了一个计算模型 FoldME,该模型为多尺度细胞反应提供了与许多数据集一致的统计描述。FoldME 模拟表明:()当伴侣蛋白应对解折叠应激时,它们作为一个系统发挥作用,而不是有效地折叠蛋白质组中的任何单个成分;()蛋白质组如何在折叠的伴侣蛋白和合成蛋白质的复杂机器之间在全局范围内达到平衡,以响应扰动;()这种平衡如何决定生长速率对温度的依赖性,并通过非特异性调节来实现;()单个蛋白质的热不稳定性如何影响蛋白质组的整体功能状态。总的来说,这些结果扩展了我们对细胞调节的看法,从有针对性的特定控制机制到通过网络的非特异性竞争相互作用进行全局调节,这种相互作用调节了细胞资源的最佳重新分配。本研究中开发的方法学能够实现环境依赖的蛋白质特性的全基因组整合,并对细胞应激反应进行全蛋白质组研究。