South T L, Summers M F
Department of Chemistry and Biochemistry, University of Maryland Baltimore County 21228.
Protein Sci. 1993 Jan;2(1):3-19. doi: 10.1002/pro.5560020102.
The nucleic acid interactive properties of a synthetic peptide with sequence of the N-terminal CCHC zinc finger (CCHC = Cys-X2-Cys-X4-His-X4-Cys; X = variable amino acid) of the human immunodeficiency virus (HIV) nucleocapsid protein, Zn(HIV1-F1), have been studied by 1H NMR spectroscopy. Titration of Zn(HIV1-F1) with oligodeoxyribonucleic acids containing different nucleotide sequences reveals, for the first time, sequence-dependent binding that requires the presence of at least one guanosine residue for tight complex formation. The dynamics of complex formation are sensitive to the nature of the residues adjacent to guanosine, with residues on the 3' side of guanosine having the largest influence. An oligodeoxyribonucleotide with sequence corresponding to a portion of the HIV-1 psi-packaging signal, d(ACGCC), forms a relatively tight complex with Zn(HIV1-F1) (Kd = 5 x 10(-6) M). Two-dimensional nuclear Overhauser effect (NOESY) data indicate that the bound nucleic acid exists predominantly in a single-stranded, A-helical conformation, and the presence of more than a dozen intermolecular NOE cross peaks enabled three-dimensional modeling of the complex. The nucleic acid binds within a hydrophobic cleft on the peptide surface. This hydrophobic cleft is defined by the side chains of residues Val1, Phe4, Ile12, and Ala13. Backbone amide protons of Phe4 and Ala13 and the backbone carbonyl oxygen of Lys2 that lie within this cleft appear to form hydrogen bonds with the guanosine O6 and N1H atoms, respectively. In addition, the positively charged side chain of Arg14 is ideally positioned for electrostatic interactions with the phosphodiester backbone of the nucleic acid. The structural findings provide a rationalization for the general conservation of these hydrophobic and basic residues in CCHC zinc fingers, and are consistent with site-directed mutagenesis results that implicate these residues as direct participants in viral genome recognition.
通过¹H NMR光谱研究了一种合成肽Zn(HIV1-F1)的核酸相互作用特性,该肽具有人类免疫缺陷病毒(HIV)核衣壳蛋白N端CCHC锌指(CCHC = 半胱氨酸-X₂-半胱氨酸-X₄-组氨酸-X₄-半胱氨酸;X = 可变氨基酸)的序列。用含有不同核苷酸序列的寡脱氧核糖核酸滴定Zn(HIV1-F1),首次揭示了序列依赖性结合,即紧密复合物形成需要至少一个鸟苷残基的存在。复合物形成的动力学对鸟苷相邻残基的性质敏感,鸟苷3'侧的残基影响最大。与HIV-1 ψ包装信号一部分序列相对应的寡脱氧核糖核苷酸d(ACGCC)与Zn(HIV1-F1)形成相对紧密的复合物(Kd = 5×10⁻⁶ M)。二维核Overhauser效应(NOESY)数据表明,结合的核酸主要以单链A螺旋构象存在,十几个分子间NOE交叉峰的存在使得复合物的三维建模成为可能。核酸结合在肽表面的一个疏水裂缝内。这个疏水裂缝由Val1、Phe4、Ile12和Ala13残基的侧链界定。位于这个裂缝内的Phe4和Ala13的主链酰胺质子以及Lys2的主链羰基氧似乎分别与鸟苷的O6和N1H原子形成氢键。此外,Arg14带正电荷的侧链位置理想,可与核酸的磷酸二酯主链发生静电相互作用。这些结构发现为CCHC锌指中这些疏水和碱性残基的普遍保守性提供了合理化解释,并且与定点诱变结果一致,这些结果表明这些残基直接参与病毒基因组识别。