Suppr超能文献

Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation.

作者信息

Guccione J M, McCulloch A D

机构信息

Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD 21205.

出版信息

J Biomech Eng. 1993 Feb;115(1):72-81. doi: 10.1115/1.2895473.

Abstract

Constitutive relations for active fiber stress in cardiac muscle are proposed and parameters are found that allow these relations to fit experimental data from the literature, including the tension redeveloped following rapid deactivating length perturbations. Contraction is driven by a length-independent free calcium transient. The number of actin sites available to react with myosin is determined from the total number of actin sites (available and inhibited), free calcium and the length history-dependent association and dissociation rates of two Ca2+ ions and troponin as governed by a first-order, classical kinetics, differential equation. Finally, the relationship between active tension and the number of available actin sites is described by a general cross-bridge model. Bridges attach in a single configuration at a constant rate, the force within each cross-bridge varies linearly with position, and the rate constant of bridge detachment depends both on position and time after onset of contraction. In Part II, these constitutive relations for active stress are incorporated in a continuum mechanics model of the left ventricle that predicted end-systolic transmural strain distributions as observed experimentally.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验