Escalante C, Yang D C
Department of Chemistry, Georgetown University, Washington, D.C. 20057.
J Biol Chem. 1993 Mar 15;268(8):6014-23.
Mammalian aspartyl-tRNA synthetase occurs in the multienzyme complex of aminoacyl-tRNA synthetases, while bacterial and yeast aspartyl-tRNA synthetases exist as free soluble enzymes. Cloning and sequencing of mammalian aspartyl-tRNA synthetase revealed a newly evolved N-terminal 32-amino-acid sequence, which contains a putative amphiphilic helix (Jacobo-Molina, A., Peterson, R., and Yang, D. C. H. (1989) J. Biol. Chem. 264, 16608-16612). Human aspartyl-tRNA synthetase (hDRS) and an N-terminal 32-residue truncated form of human aspartyl-tRNA synthetase (hDRS delta 32) were expressed in Escherichia coli under the control of the inducible tac promoter as glutathione-S-transferase (GST) fusion proteins linked through a thrombin cleavage site. The GST-hDRS fusion protein and the GST-hDRS delta 32 were purified by affinity chromatography on glutathione-agarose and were fully active in aspartylation of mammalian tRNA. After cleavage of GST from the fusion proteins by thrombin, hDRS and hDRS delta 32 were purified by affinity chromatography on tRNA-Sepharose. Both hDRS and hDRS delta 32 were present as a mixture of monomeric and dimeric forms. GST-hDRS formed high molecular weight aggregates while GST-hDRS delta 32 was a dimeric protein. Both hDRS and hDRS delta 32 bound to hydrophobic interaction gels such as aminohexyl-agarose. In the absence of propylene glycol, hDRS bound to amino-hexyl-agarose weaker than hDRS delta 32, but, in the presence of 50% propylene glycol, hDRS bound tighter than hDRS delta 32. Both hDRS and hDRS delta 32 were fully active in aspartylation of mammalian tRNA and ATP-PPi exchange. In comparison to the N-terminal truncated form, the full-length enzyme showed greater thermal stability and ATP-PPi exchange activity but lower aminoacylation activity. The catalytic constant of hDRS delta 32 for aminoacylation of tRNA was 2-fold higher than that of hDRS. The Michaelis-Menten constants for aspartic acid and tRNAAsp were 302 microM and 13 nM for hDRS, and 29 microM and 130 nM for hDRS delta 32, respectively. These results suggest that the newly evolved N-terminal peptide in hDRS may modulate the enzymatic activity, the stability, and the chromatographic behavior of hDRS. The structure and function of the N-terminal peptide in aspartyl-tRNA synthetase and in the synthetase complex will be discussed.
哺乳动物天冬氨酰 - tRNA合成酶存在于氨酰 - tRNA合成酶的多酶复合物中,而细菌和酵母的天冬氨酰 - tRNA合成酶则以游离的可溶性酶形式存在。对哺乳动物天冬氨酰 - tRNA合成酶的克隆和测序揭示了一个新进化出的N端32个氨基酸的序列,该序列包含一个假定的两亲性螺旋(雅各布 - 莫利纳,A.,彼得森,R.,以及杨,D.C.H.(1989年)《生物化学杂志》264,16608 - 16612)。人天冬氨酰 - tRNA合成酶(hDRS)和人天冬氨酰 - tRNA合成酶的N端32个残基截短形式(hDRSδ32)在可诱导的tac启动子控制下于大肠杆菌中表达,作为通过凝血酶切割位点连接的谷胱甘肽 - S - 转移酶(GST)融合蛋白。GST - hDRS融合蛋白和GST - hDRSδ32通过在谷胱甘肽 - 琼脂糖上的亲和层析进行纯化,并且在哺乳动物tRNA的氨酰化反应中具有完全活性。通过凝血酶从融合蛋白上切割掉GST后,hDRS和hDRSδ32通过在tRNA - 琼脂糖上的亲和层析进行纯化。hDRS和hDRSδ32均以单体和二聚体形式的混合物存在。GST - hDRS形成高分子量聚集体,而GST - hDRSδ32是一种二聚体蛋白。hDRS和hDRSδ32都能与疏水性相互作用凝胶如氨基己基 - 琼脂糖结合。在没有丙二醇的情况下,hDRS与氨基己基 - 琼脂糖的结合比hDRSδ32弱,但在存在50%丙二醇的情况下,hDRS的结合比hDRSδ32更紧密。hDRS和hDRSδ32在哺乳动物tRNA的氨酰化反应和ATP - PPi交换中均具有完全活性。与N端截短形式相比,全长酶表现出更高的热稳定性和ATP - PPi交换活性,但氨酰化活性较低。hDRSδ32对tRNA氨酰化反应的催化常数比hDRS高2倍。hDRS对天冬氨酸和tRNAAsp的米氏常数分别为302μM和13 nM,而hDRSδ32的分别为29μM和130 nM。这些结果表明,hDRS中新进化出的N端肽可能调节hDRS的酶活性、稳定性和色谱行为。将讨论天冬氨酰 - tRNA合成酶及合成酶复合物中N端肽的结构和功能。