Suppr超能文献

Characterization of a novel N-terminal peptide in human aspartyl-tRNA synthetase. Roles in the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha.

作者信息

Reed V S, Yang D C

机构信息

Department of Chemistry, Georgetown University, Washington, District of Columbia 20057.

出版信息

J Biol Chem. 1994 Dec 30;269(52):32937-41.

PMID:7806522
Abstract

The kinetics of the N-terminal 32 residue-deleted human aspartyl-tRNA synthetase (hDRS delta 32) was analyzed. The kinetics of aspartyl-adenylate formation and Asp-tRNA synthesis by hDRS delta 32 were indistinguishable from those of hDRS. However, the dissociation of Asp-tRNA from hDRS delta 32 was much faster than that of hDRS. Unlike hDRS delta 32-catalyzed aspartylation of tRNA was not affected by the elongation factor 1 alpha. Two N-terminal peptides of hDRS, hDRS(T5-E26) and hDRS(D12-R27), were synthesized. Both peptides bind to tRNA-Sepharose. Both peptides, hDRS(T5-E26) and hDRS(D12-R27), are monomeric and oligomerize at high peptide concentration or in 50% propylene glycol. The peptide hDRS(T5-E26) showed little alpha-helical content as analyzed by CD spectroscopy, while hDRS(D12-R27) showed appreciable alpha-helical contents in nonpolar solvents. These results suggest that the N terminus in hDRS may mediate the slow release of Asp-tRNA and facilitate the interaction of the hDRS.Asp-tRNA complex with the elongation factor 1 alpha. The demonstration of alpha-helix formation of the hDRS N-terminal peptide is consistent with the hypothetical amphiphilic helix of the N-terminal extension in hDRS. A model for the transfer of Asp-tRNA from hDRS to elongation factor 1 alpha is presented.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验