Feinendegen L E
J Cancer Res Clin Oncol. 1993;119(6):320-2. doi: 10.1007/BF01208838.
Radionuclides are applied in oncology for diagnosis and therapy. The former demands gamma--emitting radionuclides for labeling specific substrates for localizing malignant tissue and for analyzing tumor metabolism in vivo. Here, positron emission tomography (PET) may register in vivo the metabolism, for example, of glucose, amino acids, and receptors and of potentially useful cytotoxic agents. The advantage of the positron emitting radionuclides of carbon, nitrogen and fluorine is the labeling of substrates without changing substrate specificity within the metabolic reaction chain; also, substrate concentration in situ may be quantified. With regard to therapy radionuclides that emit beta- and alpha-particles or decay by electron capture with the Auger effect, are administered in ionic form or with tumor seeking substrates. Examples are radioiodine for treating thyroid malignancy and radiophosphorus for myeloproliferative diseases. Organically bound radionuclides are given as labeled ligands for specific receptors, such as meta-iodo-benzylguanidine (MIBG) for treating the catecholamine producing tumors phaeochromocytoma and neuroblastoma and labeled monoclonal antibodies for tumors specific receptors. Highly localized energy depositions come from Auger emitters such as 125I and by the neutron capture therapy, where boron-10 in the tumor cell is exposed to thermal neutrons for initiating the B10 (n; alpha) Li7 reaction, especially for treating neuro- and glioblastoma and melanoma. Endogenous radiotherapy with radionuclides rely on the success of delivering a proper amount of energy into individual tumor cells with optimal protection of normal tissue. The inevitable heterogeneity of energy deposition events from such approaches demands careful dosimetric assessment for which the classical methods of dosimetry for percutaneous radiotherapy are not applicable.
放射性核素在肿瘤学中用于诊断和治疗。诊断方面需要发射γ射线的放射性核素标记特定底物以定位恶性组织并分析体内肿瘤代谢。在此,正电子发射断层扫描(PET)可在体内记录例如葡萄糖、氨基酸、受体以及潜在有用的细胞毒性药物的代谢情况。碳、氮和氟的正电子发射放射性核素的优势在于标记底物时不会改变代谢反应链中的底物特异性;此外,还可对原位底物浓度进行量化。在治疗方面,发射β粒子和α粒子或通过俄歇效应进行电子俘获衰变的放射性核素,以离子形式或与肿瘤靶向底物一起给药。例如,放射性碘用于治疗甲状腺恶性肿瘤,放射性磷用于治疗骨髓增殖性疾病。有机结合的放射性核素以特定受体的标记配体形式给药,例如间碘苄胍(MIBG)用于治疗分泌儿茶酚胺的肿瘤嗜铬细胞瘤和神经母细胞瘤,以及用于肿瘤特异性受体的标记单克隆抗体。高度局部化的能量沉积来自俄歇发射体,如125I,以及中子俘获疗法,其中肿瘤细胞中的硼 - 10暴露于热中子以引发B10(n;α)Li7反应,尤其用于治疗神经胶质瘤和黑色素瘤。利用放射性核素进行的内照射放疗依赖于在最佳保护正常组织的情况下向单个肿瘤细胞输送适量能量的成功。这种方法不可避免的能量沉积事件异质性要求进行仔细的剂量学评估,而经皮放疗的传统剂量学方法并不适用于此。