Adams R B, Planchon S M, Roche J K
Department of Surgery, University of Virginia Health Sciences Center, Charlottesville 22908.
J Immunol. 1993 Mar 15;150(6):2356-63.
The single cell-thick intestinal epithelium forms a crucial barrier between the host and environment, and is modeled in vitro by a monolayer of polarized, highly differentiated T84 epithelial cells impermeable to most macromolecules because of functional intercellular tight junctions. Absence of a permeability defect across the monolayer, either transcellular or paracellular, is indicated by development of a transepithelial electrical resistance of > or = 1000 ohm-cm2, reported to be markedly diminished by exposure to a T lymphocyte cytokine, IFN-gamma. We sought to define this phenomenon in four ways by determining its duration and reversibility; the uniqueness of type II (gamma) IFN as opposed to type I (alpha) IFN; the surface of the polarized columnar epithelium likely involved in responding to IFN-gamma; and whether a specific surface membrane receptor on the epithelial cell participates in the response. Using a special apparatus that allows differential cytokine exposure of monolayer surfaces, our data demonstrate 1) only the monolayer's basolateral surface is IFN-gamma responsive, whereas the apical (microvillous) surface is no; 2) the alteration in electrical resistance of epithelium is prolonged (5 days), even after a single (24 h) exposure to IFN-gamma, but nevertheless is reversible; 3) the effect is likely receptor-ligand mediated, because it can be partially blocked by IFN-gamma receptor-specific monoclonal Ig; 4) an alteration in tight junction function (a paracellular pathway) rather than cell necrosis or a transcellular pathway is responsible for IFN-gamma-induced monolayer dysfunction because permeability to a 44,000-Da macromolecule (horseradish peroxidase) did not increase, and intracytoplasmic T84 cell enzymes were not released into the media; and 5) the biologic phenomenon could not be induced by a species (alpha) of class I IFN, making IFN-gamma reasonably unique in this regard. Given the proximity; activation status, and capacity of T lymphocytes for cytokine production in mucosa, we suggest that IFN-gamma-induced changes in epithelial permeability may be a major cause of altered intestinal barrier function in vivo.
单细胞厚度的肠上皮在宿主与环境之间形成了一道关键屏障,在体外可通过单层极化的、高度分化的T84上皮细胞来模拟,由于功能性细胞间紧密连接,该细胞层对大多数大分子物质具有不透性。单层细胞不存在跨细胞或细胞旁通透性缺陷的标志是跨上皮电阻发展到≥1000欧姆·平方厘米,据报道,暴露于T淋巴细胞细胞因子γ干扰素(IFN-γ)会使其显著降低。我们试图通过确定其持续时间和可逆性;II型(γ)干扰素相对于I型(α)干扰素的独特性;极化柱状上皮细胞可能参与对IFN-γ作出反应的表面;以及上皮细胞上的特定表面膜受体是否参与该反应,从四个方面来界定这一现象。使用一种特殊装置,该装置可使单层细胞表面接受不同的细胞因子暴露,我们的数据表明:1)只有单层细胞的基底外侧表面对IFN-γ有反应,而顶端(微绒毛)表面则无反应;2)即使单次(24小时)暴露于IFN-γ后,上皮电阻的改变仍会持续较长时间(5天),但仍是可逆的;3)这种效应可能是受体-配体介导的,因为它可被IFN-γ受体特异性单克隆Ig部分阻断;4)紧密连接功能(一种细胞旁途径)的改变而非细胞坏死或跨细胞途径是IFN-γ诱导单层细胞功能障碍的原因,因为对一种44000道尔顿大分子(辣根过氧化物酶)的通透性未增加,且T84细胞胞浆内的酶未释放到培养基中;5)I类干扰素的一种(α)不能诱导这种生物学现象,这使得IFN-γ在这方面相当独特。鉴于T淋巴细胞在黏膜中产生细胞因子的位置、激活状态和能力,我们认为IFN-γ诱导的上皮通透性改变可能是体内肠道屏障功能改变的主要原因。