Calderon R O, Maggio B, Neuberger T J, De Vries G H
Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614.
J Neurosci Res. 1993 Feb 1;34(2):206-18. doi: 10.1002/jnr.490340208.
The axolemma membrane forms a stable and reproducible monomolecular layer at the air-aqueous interface. The major lipids and proteins are present in this monolayer in molar ratios similar to the original membrane. Acetylcholinesterase and Na-K-ATPase activities are preserved in the monolayer to levels of 64% and 25%, respectively. The total lipid fraction forms a homogeneously mixed phase. The presence of proteins in the monolayer introduces surface inhomogeneties. Among other features, this is revealed by the presence of two values of lateral pressure at which the monolayer shows partial or total collapse: a broad partial collapse at surface pressures between 13 to 30 mN/m and a sharp collapse point at 46 mN/m. The average molecular areas, the broad collapse point, and the variation of the surface potential per molecule suggest the relocation of protein components at surface pressures between 13 to 30 mN/m. The behavior is consistent with the extrusion and exposure of proteins toward the aqueous medium that depends on the lateral pressure. Schwann cells grown on coverslips coated with axolemma monolayers at 13 mN/m (beginning of the broad collapse) and 34 mN/m (above the broad collapse) recognize the difference in the surface organization of axolemma caused by the lateral pressure which affects their proliferation, morphology, and spatial pattern of organization. Our results show for the first time that response of Schwann cells depends on the intermolecular organization of the axolemma surface with which they interact. These results suggest that the local expression of putative surface molecules of axolemma that may mediate membrane recognition and the signalling of morphological and proliferative changes can be modulated by long range supramolecular properties.
轴突膜在气-水界面形成稳定且可重复的单分子层。主要脂质和蛋白质以与原始膜相似的摩尔比存在于该单分子层中。乙酰胆碱酯酶和钠钾ATP酶活性在单分子层中分别保留至64%和25%的水平。总脂质部分形成均匀混合相。单分子层中蛋白质的存在引入了表面不均匀性。在其他特征中,这通过单分子层显示部分或完全塌陷的两个侧向压力值的存在得以揭示:在13至30 mN/m的表面压力下出现宽泛的部分塌陷,在46 mN/m处出现尖锐的塌陷点。平均分子面积、宽泛的塌陷点以及每个分子表面电位的变化表明蛋白质成分在13至30 mN/m的表面压力下发生了重新定位。这种行为与蛋白质向水相介质的挤出和暴露一致,这取决于侧向压力。在涂有13 mN/m(宽泛塌陷开始)和34 mN/m(宽泛塌陷之上)轴突膜单分子层的盖玻片上生长的施万细胞识别出由侧向压力引起的轴突膜表面组织差异,这种差异会影响它们的增殖、形态和组织空间模式。我们的结果首次表明施万细胞的反应取决于它们相互作用的轴突膜表面的分子间组织。这些结果表明,轴突膜假定表面分子的局部表达可能介导膜识别以及形态和增殖变化的信号传导,可由长程超分子性质调节。