Rosenberger F U, Matthews J W, Johns G C, Drzymala R E, Purdy J A
Institute for Biomedical Computing, Washington University, St. Louis, MO 63110.
Int J Radiat Oncol Biol Phys. 1993 Mar 15;25(4):709-19. doi: 10.1016/0360-3016(93)90020-v.
Real-time 3-dimensional dose calculation will allow display of isodose contours and other metrics for a planner to assess plan effectiveness during plan development, facilitating optimization.
Parallel processing provides an effective means to calculate 3-dimensional dose distribution in real-time while plan parameters are being chosen and adjusted. An array of 20 transputers and a high performance graphics workstation have demonstrated the feasibility of real-time 3-dimensional beam parameter specification, dose calculation, and dose-distribution presentation for evaluation. A mesh connected set of processors using surface processors to generate and terminate rays, and ray processors to calculate ray attenuation and dose distribution has been developed to efficiently utilize large numbers of processors and provide good load sharing, even for small beams that intersect only a small part of the volume.
Our feasibility study has calculated dose distribution by the Effective Path Length method in about one second per beam for a treatment volume of 56,400 voxels. We expect to reduce the total time for computation, communication, and display, with even larger volumes, to less than one second. The number of processors can easily be increased for larger treatment volumes or more accurate and computation-intensive dose-calculation algorithms. Transputers provide an elegant and economical method for harnessing up to hundreds of powerful general-purpose processors for computational tasks including dose calculation and isodose contour generation. The same distributed-memory parallel-processing configuration is also suitable for calculation of isodose contours and dose-volume histograms for plan evaluation, automatic calculation of apertures and filters as beam parameters are manipulated, and more accurate dose calculation algorithms that incorporate the effects of scatter.
Parallel processors can efficiently provide real-time calculation of the information necessary to evaluate treatment plans as they are developed allowing the planner to optimize the plan based on dose distribution and its effects on tumor control and complications.
实时三维剂量计算将允许显示等剂量线轮廓和其他指标,以便计划制定者在计划制定过程中评估计划效果,促进优化。
并行处理提供了一种有效的手段,可在选择和调整计划参数时实时计算三维剂量分布。由20个晶片机组成的阵列和一台高性能图形工作站已证明了实时三维射束参数指定、剂量计算和剂量分布呈现以进行评估的可行性。已开发出一种使用表面处理器生成和终止射线以及射线处理器计算射线衰减和剂量分布的网状连接处理器集,以有效利用大量处理器并实现良好的负载共享,即使对于仅与体积的一小部分相交的小射束也是如此。
我们的可行性研究使用有效路径长度法,对于一个包含56,400体素的治疗体积,每束射束大约在一秒内计算出剂量分布。我们预计,对于更大的体积,计算、通信和显示的总时间将减少到不到一秒。对于更大的治疗体积或更精确且计算密集型的剂量计算算法,可以轻松增加处理器数量。晶片机提供了一种优雅且经济的方法,可利用多达数百个强大的通用处理器来执行包括剂量计算和等剂量线轮廓生成在内的计算任务。相同的分布式内存并行处理配置也适用于计算等剂量线轮廓和剂量体积直方图以进行计划评估、在调整射束参数时自动计算孔径和滤过器,以及纳入散射效应的更精确剂量计算算法。
并行处理器可以有效地实时计算评估治疗计划时所需的信息,使计划制定者能够根据剂量分布及其对肿瘤控制和并发症的影响来优化计划。