Matthews J W, Rosenberger F U, Bosch W R, Harms W B, Purdy J A
Mallinckrodt Institute of Radiology, Washington University School of Medicine, Louis, MO, USA.
Int J Radiat Oncol Biol Phys. 1996 Aug 1;36(1):159-65. doi: 10.1016/s0360-3016(96)00282-9.
Both human and computer optimization of treatment plans have advantages; humans are much better at global pattern recognition, and computers are much better at detailed calculations. A major impediment to human optimization of treatment plans by manipulation of beam parameters is the long time required for feedback to the operator on the effectiveness of a change in beam parameters. Our goal was to create a real-time dose calculation and display system that provides the planner with immediate (fraction of a second) feedback with displays of three-dimensional (3D) isodose surfaces, digitally reconstructed radiographs (DRRs), dose-volume histograms, and/or a figure of merit (FOM) (i.e., a single value plan score function). This will allow the experienced treatment planner to optimize a plan by adjusting beam parameters based on a direct indication of plan effectiveness, the FOM value, and to use 3D display of target, critical organs, DRRs, and isodose contours to guide changes aimed at improving the FOM value.
We use computer platforms that contain easily utilized parallel processors and very tight coupling between calculation and display. We ported code running on a network of two workstations and an array of transputers to a single multiprocessor workstation. Our current high-performance graphics workstation contains four 150-MHz processors that can be readily used in a shared-memory multithreaded calculation.
When a 10 x 10-cm beam is moved, using an 8-mm dose grid, the full 3D dose matrix is recalculated using a Bentley-Milan-type dose calculation algorithm, and the 3D dose surface display is then updated, all in < 0.1s. A 64 x 64-pixel DRR calculation can be performed in < 0.1 s. Other features, such as automated aperture calculation, are still required to make real-time feedback practical for clinical use.
We demonstrate that real-time plan optimization using general purpose multiprocessor workstations is a practical goal. Parallel processing technology provides this capability for 3D planning systems, and when combined with objective plan ranking algorithms should prove effective for optimizing 3D conformal radiation therapy. Compared to our earlier transputer work, multiprocessor workstations are more easily programmed, making software development costs more reasonable compared with uniprocessor development costs. How the dose calculation is partitioned into parallel tasks on a multiprocessor work station can make a significant difference in performance. Shared-memory multiprocessor workstations are our first choice for future work, because they require minimum programming effort and continue to be driven to higher performance by competition in the workstation arena.
人工和计算机优化治疗计划各有优势;人类在全局模式识别方面表现出色,而计算机在详细计算方面更胜一筹。通过操纵射束参数来进行人工优化治疗计划的一个主要障碍是,需要很长时间才能向操作人员反馈射束参数变化的有效性。我们的目标是创建一个实时剂量计算和显示系统,该系统能在瞬间(几分之一秒)为计划制定者提供反馈,显示三维(3D)等剂量曲面、数字重建射线照片(DRR)、剂量体积直方图和/或一个品质因数(FOM)(即一个单一值的计划评分函数)。这将使经验丰富的治疗计划制定者能够根据计划有效性的直接指示——FOM值来调整射束参数,从而优化计划,并利用靶区、关键器官、DRR和等剂量轮廓的3D显示来指导旨在提高FOM值的改变。
我们使用的计算机平台包含易于使用的并行处理器,并且计算与显示之间的耦合非常紧密。我们将在由两台工作站和一组晶片机组成的网络上运行的代码移植到了一台单处理器多工作站上。我们当前的高性能图形工作站包含四个150兆赫兹的处理器,可在共享内存多线程计算中轻松使用。
当使用8毫米剂量网格移动一个10×10厘米的射束时,使用Bentley-Milan型剂量计算算法重新计算完整的3D剂量矩阵,然后更新3D剂量曲面显示,所有这些操作在不到0.1秒内完成。64×64像素的DRR计算可在不到0.1秒内完成。要使实时反馈在临床中切实可用,还需要其他功能,如自动孔径计算。
我们证明了使用通用多处理器工作站进行实时计划优化是一个切实可行的目标。并行处理技术为3D计划系统提供了这种能力,并且与客观的计划排序算法相结合,应该能有效优化3D适形放射治疗。与我们早期的晶片机工作相比,多处理器工作站更易于编程,与单处理器开发成本相比,软件开发成本更合理。在多处理器工作站上如何将剂量计算划分为并行任务会对性能产生显著影响。共享内存多处理器工作站是我们未来工作的首选,因为它们所需的编程工作量最少,并且在工作站领域的竞争推动下不断提升性能。