Suppr超能文献

Depressed phagocytosis in hemodialyzed patients: in vivo and in vitro mechanisms.

作者信息

Vanholder R, Dell'Aquila R, Jacobs V, Dhondt A, Veys N, Waterloss M A, Van Landschoot N, Van Biesen W, Ringoir S

机构信息

Nephrology Department, University Hospital, Ghent, Belgium.

出版信息

Nephron. 1993;63(4):409-15. doi: 10.1159/000187244.

Abstract

Infection is a frequent complication and the major cause of death among end-stage renal patients. Polymorphonuclear phagocytes (PMNL) are important in host defense mainly because of bacterial destruction by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-related free radical production following phagocytosis. In this study, hexose monophosphate pathway glycolytic activity, delivering energy to NADPH oxidase, is evaluated in vivo and in vitro, in healthy controls and in dialyzed renal failure patients. Our results show a marked parallel and correlated inhibition in the response to three stimuli for phagocytic activity (Staphylococcus aureus, formyl-methionine-leucine-phenylalanine, phorbol myristic acid) in predialysis samples. These data point to a main suppression of metabolic pathways, possibly beyond protein kinase C. This response is further suppressed at the 15th minute of cuprophane dialysis, for all stimuli studied (-40 to -94%; p < 0.001) except PMA. PMNL response remains intact during dialysis with non-complement-activating dialyzers. In vitro experiments confirm decreased PMNL glycolytic activity after the suspension of cuprophane fragments in normal whole blood. We conclude that polymorphonuclear cell energy delivery to NADPH oxidase is impaired in patients with end-stage renal failure. The impaired response against various stimuli is different in predialysis blood samples compared to samples collected during cuprophane dialysis, and may be related to two different conditions. These events probably contribute to the acquired immune suppression of uremia and the high incidence of infection among dialysis patients.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验