Graham P L, Kimble J
Laboratory of Molecular Biology, Graduate School, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706.
Genetics. 1993 Apr;133(4):919-31. doi: 10.1093/genetics/133.4.919.
Caenorhabditis elegans hermaphrodites make first sperm, then oocytes. By contrast, animals homozygous for any of six loss-of-function mutations in the gene mog-1 (for masculinization of the germ line) make sperm continuously and do not switch into oogenesis. Therefore, in mog-1 mutants, germ cells that normally would become oocytes are transformed into sperm. By contrast, somatic sexual fates are normal, suggesting that mog-1 plays a germ line-specific role in sex determination. Analyses of double mutants suggest that mog-1 negatively regulates the fem genes and/or fog-1: mog-1; fem and mog-1; fog-1 double mutants all make oocytes rather than sperm. Therefore, we propose that wild-type mog-1 is required in the hermaphrodite germ line for regulation of the switch from spermatogenesis to oogenesis rather than for specification of oogenesis per se. In addition to its role in germline sex determination, maternal mog-1 is required for embryogenesis: most progeny of a mog-1; fem or mog-1; fog-1 mother die as embryos. How might the roles of mog-1 in the sperm/oocyte switch and embryogenesis be linked? Previous work showed that fem-3 is regulated post-transcriptionally to achieve the sperm/oocyte switch. We speculate that mog-1 may function in the post-transcriptional regulation of numerous germ-line RNAs, including fem-3. A loss of mog-1 might inappropriately activate fem-3 and thereby abolish the sperm/oocyte switch; its loss might also lead to misregulation of maternal RNAs and thus embryonic death.
秀丽隐杆线虫雌雄同体先产生精子,然后产生卵母细胞。相比之下,基因mog-1(用于生殖系雄性化)中六个功能丧失突变中的任何一个的纯合动物会持续产生精子,并且不会转换为卵子发生。因此,在mog-1突变体中,正常情况下会变成卵母细胞的生殖细胞会转化为精子。相比之下,体细胞的性别命运是正常的,这表明mog-1在性别决定中发挥着生殖系特异性作用。对双突变体的分析表明,mog-1对fem基因和/或fog-1起负调控作用:mog-1;fem和mog-1;fog-1双突变体都产生卵母细胞而不是精子。因此,我们提出,野生型mog-1在雌雄同体生殖系中是调节从精子发生到卵子发生转换所必需的,而不是卵子发生本身的特化所必需的。除了在生殖系性别决定中的作用外,母体mog-1对胚胎发生也是必需 的:mog-1;fem或mog-1;fog-1母亲的大多数后代在胚胎期死亡。mog-1在精子/卵母细胞转换和胚胎发生中的作用是如何联系起来的呢?先前的研究表明,fem-3在转录后受到调控以实现精子/卵母细胞的转换。我们推测,mog-1可能在包括fem-3在内的众多生殖系RNA的转录后调控中发挥作用。mog-1的缺失可能会不适当地激活fem-3,从而消除精子/卵母细胞的转换;它的缺失也可能导致母体RNA的调控失调,从而导致胚胎死亡。